por vanessitah » Sáb Mar 05, 2011 18:38
Conheço a regra que diz que so é possivel somar raizes q tenham o mesmo indice e mesmo radicando, porem na minha apostila, me deparei com um exercicio, que diz...Calcule: a)
![\sqrt[1]{5}+\sqrt[]{4}+\sqrt[3]{27}+\sqrt[4]{0}+\sqrt[5]{-1}= \sqrt[1]{5}+\sqrt[]{4}+\sqrt[3]{27}+\sqrt[4]{0}+\sqrt[5]{-1}=](/latexrender/pictures/e32058df9cae7cdc3187dedd829f0634.png)
Eu tentei simplificar ao maximo para resolver, e mesmo assim fiquei com duvidas, e nao consegui ! Podem me ajudar por favor?! Grata
-
vanessitah
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mar 05, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por vanessitah » Sáb Mar 05, 2011 19:45
Sendo assim calculei que:
![\sqrt[1]{5}+\sqrt[]{{2}^{2}}+\sqrt[3]{{3}^{3}}+\sqrt[4]{0}+\sqrt[5]{-1}= \sqrt[1]{5}+2+3+0-{1}^{5}=\sqrt[1]{5}+5-1=\sqrt[1]{5}+4=5+4=+9 \sqrt[1]{5}+\sqrt[]{{2}^{2}}+\sqrt[3]{{3}^{3}}+\sqrt[4]{0}+\sqrt[5]{-1}= \sqrt[1]{5}+2+3+0-{1}^{5}=\sqrt[1]{5}+5-1=\sqrt[1]{5}+4=5+4=+9](/latexrender/pictures/1cd078cff76246363824e9ed3899beef.png)
. Esta correto ou falhei no caminho? Obrigada!
-
vanessitah
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mar 05, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Sáb Mar 05, 2011 19:50
Está correto!
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por vanessitah » Sáb Mar 05, 2011 19:56
Como é gostoso quando conseguimos resolver! Para mim matematica é uma barreira pela qual decidi derrubar, e vencer os medos. Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.
-
vanessitah
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mar 05, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Sáb Mar 05, 2011 20:06
Qualquer dúvida, é só postar novamente. Desejo sucesso! Abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Dom Mar 06, 2011 00:53
vanessitah escreveu:Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.
Acredito que o tópico a seguir possa lhe interessar:
Aulas de Matemática no YouTubeviewtopic.php?f=120&t=3818
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por vanessitah » Dom Mar 06, 2011 00:57
Dica muito valiosa, toda informaçao é bem vinda neste momento! Obrigada, ja esta nos meus Favoritos!
-
vanessitah
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mar 05, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por vanessitah » Dom Mar 06, 2011 00:58
LuizAquino escreveu:vanessitah escreveu:Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.
Acredito que o tópico a seguir possa lhe interessar:
Aulas de Matemática no YouTubeviewtopic.php?f=120&t=3818
Dica muito valiosa, toda informaçao é bem vinda neste momento! Obrigada, ja esta nos meus Favoritos!
-
vanessitah
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mar 05, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 7893 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
-
- [Radiciação] Raízes dentro de raízes
por mottasky » Ter Set 13, 2011 22:00
- 2 Respostas
- 2378 Exibições
- Última mensagem por mottasky

Qui Set 15, 2011 15:52
Álgebra Elementar
-
- Adição de Arcos
por Cleyson007 » Seg Mar 29, 2010 13:07
- 2 Respostas
- 2906 Exibições
- Última mensagem por Cleyson007

Ter Mar 30, 2010 11:43
Trigonometria
-
- Adição e Subtração.
por re999mat » Qui Ago 09, 2018 17:01
- 0 Respostas
- 3236 Exibições
- Última mensagem por re999mat

Qui Ago 09, 2018 17:01
Álgebra Elementar
-
- Adição e Subtração de Frações
por LuizCarlos » Sáb Mar 17, 2012 00:10
- 1 Respostas
- 3732 Exibições
- Última mensagem por fraol

Sáb Mar 17, 2012 11:58
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.