• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Adiçao de Raizes

Adiçao de Raizes

Mensagempor vanessitah » Sáb Mar 05, 2011 18:38

Conheço a regra que diz que so é possivel somar raizes q tenham o mesmo indice e mesmo radicando, porem na minha apostila, me deparei com um exercicio, que diz...Calcule: a)\sqrt[1]{5}+\sqrt[]{4}+\sqrt[3]{27}+\sqrt[4]{0}+\sqrt[5]{-1}= Eu tentei simplificar ao maximo para resolver, e mesmo assim fiquei com duvidas, e nao consegui ! Podem me ajudar por favor?! Grata
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor MarceloFantini » Sáb Mar 05, 2011 19:27

Lembre-se que 4 = 2^2, 27 = 3^3 e que -1^5 = -1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor vanessitah » Sáb Mar 05, 2011 19:45

Sendo assim calculei que: \sqrt[1]{5}+\sqrt[]{{2}^{2}}+\sqrt[3]{{3}^{3}}+\sqrt[4]{0}+\sqrt[5]{-1}= \sqrt[1]{5}+2+3+0-{1}^{5}=\sqrt[1]{5}+5-1=\sqrt[1]{5}+4=5+4=+9. Esta correto ou falhei no caminho? Obrigada!
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor MarceloFantini » Sáb Mar 05, 2011 19:50

Está correto!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor vanessitah » Sáb Mar 05, 2011 19:56

Como é gostoso quando conseguimos resolver! Para mim matematica é uma barreira pela qual decidi derrubar, e vencer os medos. Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor MarceloFantini » Sáb Mar 05, 2011 20:06

Qualquer dúvida, é só postar novamente. Desejo sucesso! Abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor LuizAquino » Dom Mar 06, 2011 00:53

vanessitah escreveu:Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.

Acredito que o tópico a seguir possa lhe interessar:
Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Adiçao de Raizes

Mensagempor vanessitah » Dom Mar 06, 2011 00:57

Dica muito valiosa, toda informaçao é bem vinda neste momento! Obrigada, ja esta nos meus Favoritos!
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor vanessitah » Dom Mar 06, 2011 00:58

LuizAquino escreveu:
vanessitah escreveu:Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.

Acredito que o tópico a seguir possa lhe interessar:
Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818


Dica muito valiosa, toda informaçao é bem vinda neste momento! Obrigada, ja esta nos meus Favoritos!
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?