• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ache o dominio

Ache o dominio

Mensagempor angelmix » Sex Jul 27, 2012 14:49

Considere a função de?nida pela expressão abaixo. Então, calcule Dom(f), isto é, o maior domínio real possível para a função.

f(x)=ln(senx)/x²
angelmix
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Out 19, 2011 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Ache o dominio

Mensagempor e8group » Sex Jul 27, 2012 16:39

O que você tentou ?

Observe que f(x) = \frac{1}{x^2} ln(sin(x)) estar definido na parte real para x^2\neq 0 e sin(x) > 0 .

Isso quer dizer D(f) \in \left (0 + 2\pi k,\pi[1 + 2 k]\right)  , \forall k \in \mathbb{Z} , note que há uma descontinuidade para x = \pi e x = 0 . Agora ,em respopsta ao enunciado ,o maior domínio de f \in (\pi ,\pi\cdot \left[1+2n\right] )  ,  \forall n \in \mathbb{Z} .


acredito que seja isso .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ache o dominio

Mensagempor Camila Carvalho » Ter Jul 31, 2012 01:23

o conjunto do inteiros inclusive o zero?
Camila Carvalho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jul 31, 2012 01:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Ache o dominio

Mensagempor e8group » Ter Jul 31, 2012 10:58

Camila Carvalho escreveu:o conjunto do inteiros inclusive o zero?


Sim , para o domínio de f .Devido a descontinuidade para x = \pi ; x= 0 implica D(f) \in ( 0 +2k\pi ,\pi[1+2k])  , \forall k \in \mathbb{Z}

Agora para o maior domínio da função f , \in (\pi , \pi[1+2n]) , \forall n \in \mathbb{Z^*}

Obrigado pela observação .

Gostaria de ressaltar, caso alguém no fórum ver outra possibilidade de solução para " o maior domínio da função f " por favor , post aqui .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.