• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ache o dominio

Ache o dominio

Mensagempor angelmix » Sex Jul 27, 2012 14:49

Considere a função de?nida pela expressão abaixo. Então, calcule Dom(f), isto é, o maior domínio real possível para a função.

f(x)=ln(senx)/x²
angelmix
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Out 19, 2011 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Ache o dominio

Mensagempor e8group » Sex Jul 27, 2012 16:39

O que você tentou ?

Observe que f(x) = \frac{1}{x^2} ln(sin(x)) estar definido na parte real para x^2\neq 0 e sin(x) > 0 .

Isso quer dizer D(f) \in \left (0 + 2\pi k,\pi[1 + 2 k]\right)  , \forall k \in \mathbb{Z} , note que há uma descontinuidade para x = \pi e x = 0 . Agora ,em respopsta ao enunciado ,o maior domínio de f \in (\pi ,\pi\cdot \left[1+2n\right] )  ,  \forall n \in \mathbb{Z} .


acredito que seja isso .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ache o dominio

Mensagempor Camila Carvalho » Ter Jul 31, 2012 01:23

o conjunto do inteiros inclusive o zero?
Camila Carvalho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jul 31, 2012 01:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Ache o dominio

Mensagempor e8group » Ter Jul 31, 2012 10:58

Camila Carvalho escreveu:o conjunto do inteiros inclusive o zero?


Sim , para o domínio de f .Devido a descontinuidade para x = \pi ; x= 0 implica D(f) \in ( 0 +2k\pi ,\pi[1+2k])  , \forall k \in \mathbb{Z}

Agora para o maior domínio da função f , \in (\pi , \pi[1+2n]) , \forall n \in \mathbb{Z^*}

Obrigado pela observação .

Gostaria de ressaltar, caso alguém no fórum ver outra possibilidade de solução para " o maior domínio da função f " por favor , post aqui .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}