• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ache o dominio

Ache o dominio

Mensagempor angelmix » Sex Jul 27, 2012 14:49

Considere a função de?nida pela expressão abaixo. Então, calcule Dom(f), isto é, o maior domínio real possível para a função.

f(x)=ln(senx)/x²
angelmix
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Out 19, 2011 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Ache o dominio

Mensagempor e8group » Sex Jul 27, 2012 16:39

O que você tentou ?

Observe que f(x) = \frac{1}{x^2} ln(sin(x)) estar definido na parte real para x^2\neq 0 e sin(x) > 0 .

Isso quer dizer D(f) \in \left (0 + 2\pi k,\pi[1 + 2 k]\right)  , \forall k \in \mathbb{Z} , note que há uma descontinuidade para x = \pi e x = 0 . Agora ,em respopsta ao enunciado ,o maior domínio de f \in (\pi ,\pi\cdot \left[1+2n\right] )  ,  \forall n \in \mathbb{Z} .


acredito que seja isso .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ache o dominio

Mensagempor Camila Carvalho » Ter Jul 31, 2012 01:23

o conjunto do inteiros inclusive o zero?
Camila Carvalho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jul 31, 2012 01:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Ache o dominio

Mensagempor e8group » Ter Jul 31, 2012 10:58

Camila Carvalho escreveu:o conjunto do inteiros inclusive o zero?


Sim , para o domínio de f .Devido a descontinuidade para x = \pi ; x= 0 implica D(f) \in ( 0 +2k\pi ,\pi[1+2k])  , \forall k \in \mathbb{Z}

Agora para o maior domínio da função f , \in (\pi , \pi[1+2n]) , \forall n \in \mathbb{Z^*}

Obrigado pela observação .

Gostaria de ressaltar, caso alguém no fórum ver outra possibilidade de solução para " o maior domínio da função f " por favor , post aqui .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: