• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dominio de uma função trigonometrica

dominio de uma função trigonometrica

Mensagempor tigre matematico » Qua Out 19, 2011 20:02

Qual é o dominio da função tg(x) (maior ou igual a) -1?
tigre matematico
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qui Out 13, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: dominio de uma função trigonometrica

Mensagempor TheoFerraz » Qua Out 19, 2011 20:13

Pense assim, o domínio é basicamente os pontos do eixo Ox nos quais faz sentido calcular a função!

Entao tá. existe tg de \pi? existe... existe tg de \frac{3 \; \pi}{4} sim existe.
entao tudo isso está no domínio! os pontos que não estão são os pontos n \times \frac{\pi}{2} \forall n \in \textrm{N}

Ou seja, multiplos de \frac{\pi}{2}, pq nao faz sentido calcular a tg... Voce estaria 'dividindo por zero'

Dai o Domínio ficaria, de uma maneira bem chique :

{Dom}_{(f)}=\{x \in \textrm{R} / x \neq n \times \frac{\pi}{2} \forall n \in \textrm{N}\}

ou, mais legível:

{Dom}_{(f)}=\{x \in \left[- \pi, \pi \right] / x \neq \frac{\pi}{2} \; , \; \frac{3 \pi}{2}\}
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: dominio de uma função trigonometrica

Mensagempor TheoFerraz » Qua Out 19, 2011 20:21

AAAAAAAAAAAAAah Putz cara, desculpa. nao tinha entendido, voce quer o domínio de:

tg(x) \leq -1

né? eu achei q era só de tg(x) e vc tinha sugerido a resposta "menor igual a -1

Ai muda tudo!

é só pensar, quais angulos o círculo trigonométrico darão uma tg negativa... voce sabe a interpretação da tg no círculo né? entao.

A resposta tem que ser dentro do segundo e do quarto quadrante pra começo de conversa, pois estamos falando de tgs negativas!
E ela tem que ser menor do que -1, as tgs que vão dar -1 são aquelas relativas aos angulos cujo angulo agudo com o eixo cosseno fazem 45º... Tente ir por ai, não é dificil.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: dominio de uma função trigonometrica

Mensagempor tigre matematico » Qua Out 19, 2011 20:27

Eu pensei o seguinte: no 1 e 3 quadrante tgx é sempre maior ou igual a -1( pois nesses quadrantes tgx é sempre positiva). Logo, dominio é 0+kphi<x<phi/2 + kphi

Ja no segundo e quarto quadrante,temos que analisar: tgx=-1 se x = 3phi/4 e x=7phi/4. logo os valores que tornam tgx maiores ou iguais a -1 no segundo e quarto quadrante é 3ph/4+kphi<x<phi+kphi. Logo, o dominio final é:
0+kphi<x<phi/2 + kphi ou x = 3phi/4 e x=7phi/4
Ta certo o meu raciocinio??
valeu,obrigado pela ajuda
tigre matematico
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qui Out 13, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: dominio de uma função trigonometrica

Mensagempor TheoFerraz » Qui Out 20, 2011 13:08

Percebi que eu tinha interpretado mal 2 vezes, o que vc quer mesmo é :

tg(x) \geq -1

Eu pensei o seguinte: no 1 e 3 quadrante tgx é sempre maior ou igual a -1( pois nesses quadrantes tgx é sempre positiva)


Está certo. e portanto ambos os quadrantes fazem parte do domínio.

Ja no segundo e quarto quadrante,temos que analisar:tgx=-1 sex = \frac{3 \pi}{4} e x=\frac{7 \pi}{4}. logo os valores que tornam tgx maiores ou iguais a -1 no segundo e quarto quadrante é \frac{3\pi}{4} + k \pi < x < \pi+k \pi. Logo, o dominio final é:
0+k \pi<x< \frac{ \pi}{2} + k \pi ou x = \frac{3 \pi}{4} e x= \frac{7 \pi}{4}


Se eu tiver escrito errado seu pensamente corrija-me, por favor. mas, Bom... seu raciocinio

Eu nao compreendi perfeitamente o finzinho do seu raciocinio, mas de qualquer jeito, voce concorda que o domínio será a junção dos intervalos:

A \;\;\;\  : \;\;\;\ \left[ 0 , \frac{ \pi}{4} \right)

B \;\;\;\  : \;\;\;\ \left[ \frac{3 \pi}{4} , \frac{ 3 \pi}{2} \right)

C \;\;\;\  : \;\;\;\ \left[ \frac{7 \pi}{4} , 2 \pi \right]

Supondo uma só volta do círculo.

entao é correto escrever assim:

{Dom}_{( tg(x) \geq -1)} = \{ \; x \in \emph{R} \;\; tal \; que \; x \in  \left[ 0 , \frac{ \pi}{4} \right) \; ou \;  \left[ \frac{3 \pi}{4} , \frac{ 3 \pi}{2} \right) \; ou \;  \left[ \frac{7 \pi}{4} , 2 \pi \right] \}

Não sei, o que voce acha?
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: dominio de uma função trigonometrica

Mensagempor TheoFerraz » Qui Out 20, 2011 13:12

Tente desenhar no círculo trigonométrico o domínio.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.