Percebi que eu tinha interpretado mal 2 vezes, o que vc quer mesmo é :

Eu pensei o seguinte: no 1 e 3 quadrante tgx é sempre maior ou igual a -1( pois nesses quadrantes tgx é sempre positiva)
Está certo. e portanto ambos os quadrantes fazem parte do domínio.
Ja no segundo e quarto quadrante,temos que analisar:

se

e

. logo os valores que tornam tgx maiores ou iguais a -1 no segundo e quarto quadrante é

. Logo, o dominio final é:

ou

e

Se eu tiver escrito errado seu pensamente corrija-me, por favor. mas, Bom... seu raciocinio
Eu nao compreendi perfeitamente o finzinho do seu raciocinio, mas de qualquer jeito, voce concorda que o domínio será a junção dos intervalos:


![C \;\;\;\ : \;\;\;\ \left[ \frac{7 \pi}{4} , 2 \pi \right] C \;\;\;\ : \;\;\;\ \left[ \frac{7 \pi}{4} , 2 \pi \right]](/latexrender/pictures/297c022c04a78a4ac1a39c053d73eb9c.png)
Supondo uma só volta do círculo.
entao é correto escrever assim:
![{Dom}_{( tg(x) \geq -1)} = \{ \; x \in \emph{R} \;\; tal \; que \; x \in \left[ 0 , \frac{ \pi}{4} \right) \; ou \; \left[ \frac{3 \pi}{4} , \frac{ 3 \pi}{2} \right) \; ou \; \left[ \frac{7 \pi}{4} , 2 \pi \right] \} {Dom}_{( tg(x) \geq -1)} = \{ \; x \in \emph{R} \;\; tal \; que \; x \in \left[ 0 , \frac{ \pi}{4} \right) \; ou \; \left[ \frac{3 \pi}{4} , \frac{ 3 \pi}{2} \right) \; ou \; \left[ \frac{7 \pi}{4} , 2 \pi \right] \}](/latexrender/pictures/745ce3657553a0566935c384e4762dc3.png)
Não sei, o que voce acha?