por Jovani Souza » Sáb Mai 18, 2013 12:32
Provar Propriedade Arquimediana: Para qualquer real x existe n E N/n>x
Podemos provar por absurdo por exemplo:
Se para algum x E R tivéssemos n<x, para todo n E N, então x é uma cota superior de N.
Como podemos provar isso passo a passo?
Grato!
-
Jovani Souza
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Mai 18, 2013 12:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por e8group » Sáb Mai 18, 2013 16:52
Pensei da seguinte forma :
Se

tal que

tem-se

então

é limitado superiormente e possui uma cota superior .Consideremos

a menor das cotas superiores .Como o número

e

implica que este número não é limite superior de

.Assim ,

tal que

o que implica

.Como

,concluímos

não é majorante e também não pode ser a menor das cotas superiores de

e isto é uma contradição ,uma vez que consideremos

como a menor das cotas superiores .Desta forma ,concluímos que

sempre existirá algum número natural

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Provar, usando a propriedade arquimediana
por Aliocha Karamazov » Sex Set 09, 2011 01:25
- 5 Respostas
- 3088 Exibições
- Última mensagem por fraol

Seg Dez 19, 2011 19:53
Sequências
-
- [Prove usando a Propriedade Arquimediana...] Propriedade Arq
por alessandro » Seg Abr 16, 2012 19:10
- 1 Respostas
- 1546 Exibições
- Última mensagem por alessandro

Seg Abr 16, 2012 19:12
Sequências
-
- Funções - provar propriedade
por emsbp » Sáb Jul 07, 2012 17:59
- 2 Respostas
- 1511 Exibições
- Última mensagem por emsbp

Dom Jul 08, 2012 18:27
Funções
-
- Demonstre a propriedade
por Aliocha Karamazov » Sáb Jul 09, 2011 02:02
- 1 Respostas
- 1230 Exibições
- Última mensagem por Guill

Dom Jul 10, 2011 09:33
Funções
-
- Racionais: propriedade
por Victor Gabriel » Dom Mai 12, 2013 15:58
- 0 Respostas
- 1322 Exibições
- Última mensagem por Victor Gabriel

Dom Mai 12, 2013 15:58
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.