• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provar Propriedade Arquimediana

Provar Propriedade Arquimediana

Mensagempor Jovani Souza » Sáb Mai 18, 2013 12:32

Provar Propriedade Arquimediana: Para qualquer real x existe n E N/n>x

Podemos provar por absurdo por exemplo:
Se para algum x E R tivéssemos n<x, para todo n E N, então x é uma cota superior de N.

Como podemos provar isso passo a passo?

Grato!
Jovani Souza
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Mai 18, 2013 12:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Provar Propriedade Arquimediana

Mensagempor e8group » Sáb Mai 18, 2013 16:52

Pensei da seguinte forma :

Se \exists x \in \mathbb{R} tal que \forall n \in \mathbb{N} tem-se x \geq n então \mathbb{N} é limitado superiormente e possui uma cota superior .Consideremosn a menor das cotas superiores .Como o número n-1 \in \mathbb{N} e n-1 < n implica que este número não é limite superior de \mathbb{N} .Assim , \exists n' \in \mathbb{N} tal que n' > n-1 o que implica n'+1 > n .Como n'+1 \in \mathbb{N} ,concluímos n não é majorante e também não pode ser a menor das cotas superiores de \mathbb{N} e isto é uma contradição ,uma vez que consideremos n como a menor das cotas superiores .Desta forma ,concluímos que \forall x \in \mathbb{R} sempre existirá algum número natural n > x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)