• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas Parciais e Multiplicadores de Lagrange]

[Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:02

Boa noite. Não estou conseguindo resolver este problema envolvendo Multiplicadores de Lagrange:

5. O lucro mensal total de uma empresa obtido na produção e venda de x centenas de termostatos mecânicos e y unidades de termostatos eletrônicos é dado pela função:

P(x,y) = -\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280

onde P é o lucro em centenas de reais. Se a produção dos termostatos está condicionada a um total de 4000 unidades por mês, quantas unidades de cada modelo a empresa deveria fabricar para obter o maior lucro possível? Qual é o máximo lucro mensal? (R: R$ 52.600,00) Segundo a professora a resposta para o máximo lucro mensal é R$ 52.600,00

Vejam minhas contas:

F(x,g,\lambda)=P(x,y)-\lambda[g(x,y)]

g(x,y)=x+y-4000

F(x,y,\lambda)=-\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280-\lambda(x+y-4000)

Fx=0
[tex]Fy=0
[tex]F\lambda=0

[tex]\frac{\alpha(F)}{\alpha(x)}=0
\frac{\alpha(F)}{\alpha(y)}=0
\frac{\alpha(F)}{\alpha(\lambda)}=0

As derivadas parciais ficam assim:

Fx=-\frac{1}{4}x-\frac{1}{4}y+13-\lambda=0
Fy=-y-\frac{1}{4}x+40-\lambda=0
F\lambda=-(x+y-4000)=0

Resolvendo o sistema pra achar x e y:

-\frac{1}{4}x-\frac{1}{4}y+13=-y-\frac{1}{4}x+40

y-\frac{1}{4}y=40-13

\frac{3}{4}y=27, y=\frac{27.4}{3}

y=36

x+y=4000, x=4000-36,...

x=3964

Substituindo x e y na função lucro P(x,y)=-\frac{1}{4}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280

Temos: P(3964;36)=-1.947794,00

MUITO DIFERENTE DO RESULTADO ACHADO PELA PROFESSORA: R$ 52.600,00

Poderiam me ajudar em ver onde errei? Por favor?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:04

Saiu errado a fórmula do lucro!

A correta é esta aqui:

P(x,y)=-\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:07

A fórmula do lucro é esta:

P(x,y) = -1/8x² - 1/2y² - 1/4xy + 13x + 40y - 280

Não sei por que está aparecendo ess "A" angulo na minha equação!
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor young_jedi » Sáb Dez 15, 2012 20:59

veja que no enunciado ele diz:

5. O lucro mensal total de uma empresa obtido na produção e venda de x centenas de termostatos mecânicos e y unidades de termostatos eletrônicos é dado pela função:

então quando ele diz que o total de unidades é 4000 voce tem

100.x+y=4000

tente fazer com esta equação e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:03

Então a equação fica: x+y=40

Bem que eu suspeitava, pois fazendo x=4 e y=36, dá o resultado correto que a professora falou! Obrigado pela ajuda!
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:04

Fiz pelo Wolfram e deu esse resultado mesmo
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:06

100.x+y=4000 = x+y=\frac{4000}{100} = x+y=40

Está correta esta conta?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor young_jedi » Dom Dez 16, 2012 12:45

não

100x+y=4000

x+\frac{y}{100}=40

a sua função g(x,y) sera

g(x,y)=1000x+y-4000
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D