• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas Parciais e Multiplicadores de Lagrange]

[Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:02

Boa noite. Não estou conseguindo resolver este problema envolvendo Multiplicadores de Lagrange:

5. O lucro mensal total de uma empresa obtido na produção e venda de x centenas de termostatos mecânicos e y unidades de termostatos eletrônicos é dado pela função:

P(x,y) = -\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280

onde P é o lucro em centenas de reais. Se a produção dos termostatos está condicionada a um total de 4000 unidades por mês, quantas unidades de cada modelo a empresa deveria fabricar para obter o maior lucro possível? Qual é o máximo lucro mensal? (R: R$ 52.600,00) Segundo a professora a resposta para o máximo lucro mensal é R$ 52.600,00

Vejam minhas contas:

F(x,g,\lambda)=P(x,y)-\lambda[g(x,y)]

g(x,y)=x+y-4000

F(x,y,\lambda)=-\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280-\lambda(x+y-4000)

Fx=0
[tex]Fy=0
[tex]F\lambda=0

[tex]\frac{\alpha(F)}{\alpha(x)}=0
\frac{\alpha(F)}{\alpha(y)}=0
\frac{\alpha(F)}{\alpha(\lambda)}=0

As derivadas parciais ficam assim:

Fx=-\frac{1}{4}x-\frac{1}{4}y+13-\lambda=0
Fy=-y-\frac{1}{4}x+40-\lambda=0
F\lambda=-(x+y-4000)=0

Resolvendo o sistema pra achar x e y:

-\frac{1}{4}x-\frac{1}{4}y+13=-y-\frac{1}{4}x+40

y-\frac{1}{4}y=40-13

\frac{3}{4}y=27, y=\frac{27.4}{3}

y=36

x+y=4000, x=4000-36,...

x=3964

Substituindo x e y na função lucro P(x,y)=-\frac{1}{4}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280

Temos: P(3964;36)=-1.947794,00

MUITO DIFERENTE DO RESULTADO ACHADO PELA PROFESSORA: R$ 52.600,00

Poderiam me ajudar em ver onde errei? Por favor?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:04

Saiu errado a fórmula do lucro!

A correta é esta aqui:

P(x,y)=-\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:07

A fórmula do lucro é esta:

P(x,y) = -1/8x² - 1/2y² - 1/4xy + 13x + 40y - 280

Não sei por que está aparecendo ess "A" angulo na minha equação!
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor young_jedi » Sáb Dez 15, 2012 20:59

veja que no enunciado ele diz:

5. O lucro mensal total de uma empresa obtido na produção e venda de x centenas de termostatos mecânicos e y unidades de termostatos eletrônicos é dado pela função:

então quando ele diz que o total de unidades é 4000 voce tem

100.x+y=4000

tente fazer com esta equação e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:03

Então a equação fica: x+y=40

Bem que eu suspeitava, pois fazendo x=4 e y=36, dá o resultado correto que a professora falou! Obrigado pela ajuda!
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:04

Fiz pelo Wolfram e deu esse resultado mesmo
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:06

100.x+y=4000 = x+y=\frac{4000}{100} = x+y=40

Está correta esta conta?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor young_jedi » Dom Dez 16, 2012 12:45

não

100x+y=4000

x+\frac{y}{100}=40

a sua função g(x,y) sera

g(x,y)=1000x+y-4000
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59