• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(AFA) equação logaritmica

(AFA) equação logaritmica

Mensagempor natanskt » Sex Out 08, 2010 12:27

O valor de -log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right] é?
a-)1
b-)2
c-)3
d-)4

nem conseguir começar a conta
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AFA) equação logaritmica

Mensagempor DanielRJ » Sex Out 08, 2010 14:25

natanskt escreveu:O valor de -log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right] é?
a-)1
b-)2
c-)3
d-)4

nem conseguir começar a conta


-log_{2}[log_{2}2^\frac{1}{8}] cortas o 2 da base e o 2 logaritmano.


-log_{2}[\frac{1}{8}]

-log_{2}[\frac{1}{2^3}]

-log_{2}2^{-3}

-1.-3

3


Eu fiquei meio em duvida vamo esperar algum amigo aparecer ai..
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (AFA) equação logaritmica

Mensagempor Molina » Sex Out 08, 2010 14:30

natanskt escreveu:O valor de -log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right] é?
a-)1
b-)2
c-)3
d-)4

nem conseguir começar a conta

Boa tarde, Natan.

Vamos resolvendo por partes:

Sabemos que \sqrt {\sqrt{\sqrt{2}}}=2^{\frac{1}{8}}

Ou seja, \left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]=\left[log_2 2^{\frac{1}{8}} \right]=\frac{1}{8}*log_2 2 =\frac{1}{8}*1=\frac{1}{8}

Voltando na expressão geral:

-log_2\left[log_2 \sqrt { \sqrt{\sqrt{2}}} \right]=-log_2\left[\frac{1}{8} \right]=-log_2\left[2^{-3} \right]=-(-3)*log_2 2 =3*1=3

Basicamente foi usado as propriedades logarítmicas e algébricas.

Qualquer dúvida em alguma passagem, informe!

Bom estudo. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.