• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Sen quadrado e mais uma duvida

Integral Sen quadrado e mais uma duvida

Mensagempor Deivid » Qui Set 23, 2010 16:25

Olá novamente comunidade AjudaMatematica, preciso da ajuda de vocês.
Tenho a seguinte questão:"Use a fórmula cos2x=1-2{sen}^{2}x para calcular a integral \int_{}^{}\frac{1}{cos2x-1}dx"
Eu não estou conseguindo resolver, nunca resolvi nenhuma com sen².


A outra duvida é na seguinte questão: "Calcular a área da região delimitada por y=senx e y=cosx, x=0 e x=2\pi.Apresente o gráfico da região desenvolvido em um software gráfico."
O Grafico:
Imagem

Resultados que obtive:

\left|2\int_{0}^{\pi}senxdx -4\int_{0}^{\frac{\pi}{2}}cosxdx \right|=0

Porem, área até onde sei tem que ser diferente de 0, alguém pode me explicar o que ha de errado?

Obrigado, Deivid Steffens.
Deivid
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Set 21, 2010 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral Sen quadrado e mais uma duvida

Mensagempor Neperiano » Qui Set 23, 2010 17:36

Ola

Quanto a questão do sen^2, separe ele faça sen.sen e derive assim, e alem disso voce pode substitui pq 1/sen é cossec, tente fazer ai qualquer coisa eu ajudo

Ate
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Integral Sen quadrado e mais uma duvida

Mensagempor Deivid » Qui Set 23, 2010 18:00

Olá Maligno, obrigado pela resposta.
Só que, eu não quero derivar, eu quero integrar. Ainda assim tentei e cai em -\frac{1}{2}\int_{}^{}{cosec}^{2} 2xdx e segundo a tabela que eu tenho a resolução para essa integral se da da seguinte forma: \int_{}^{}{cosec}^{n}udu=-\frac{1}{n-1}{cosec}^{n-2}u cotgu+\frac{n-2}{n-1}\int_{}^{}{cosec}^{n-2}udu, porém, se eu aplicar a formula, terão varios valores iguais a 0. Como procedo depois de fazer o que você falou?

A a outra duvida sobre a área igual a 0?
Deivid
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Set 21, 2010 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral Sen quadrado e mais uma duvida

Mensagempor Marcampucio » Qui Set 23, 2010 18:47

\int \frac{1}{cos2x-1} dx=\frac{1}{2}\int \frac{1}{sen^2x} dx=\frac{1}{2}\int cossec^2x dx=-\frac{1}{2}cotanx+C

quanto à questão da área compreendida entre as curvas, a área abaixo do eixo horizontal produz uma integral negativa. Repare que as áreas são iguais. Você pode optar por:

A=2\left(\int_{\frac{\pi}{4}}^{\pi}senx dx-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}cosx dx\right)
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Integral Sen quadrado e mais uma duvida

Mensagempor Deivid » Qui Set 23, 2010 19:35

Marcumpucio, obrigado pela resposta!
Foi erro meu não ter visto isso na tabela de integrais, eu cismei que era aquela ali que falei no post acima e nem olhei novamente a tabela. Obrigado!
Sobre a área, agora obtive o valor 4.
Deivid
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Set 21, 2010 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral Sen quadrado e mais uma duvida

Mensagempor Neperiano » Qui Set 23, 2010 19:44

Ola

Ops queria falar integral xd, mas o marcopuio ja ajudo
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Integral Sen quadrado e mais uma duvida

Mensagempor Deivid » Sáb Set 25, 2010 12:47

Eu estava olhando resultados de outras pessoas e elas obtiveram resultados diferentes do meu na questão sobre a área.

Vou postar aqui a minha conta e a conta da outra pessoa que eu olhei.

Resposta da pessoa:
{A}_{1}=\int_{0}^{\frac{\pi}{4}}cos x - sin xdx = 1,41
{A}_{2}=\int_{\frac{\pi}{4}}^{225}sin x - cos xdx = 0
{A}_{3}=\int_{2\pi}^{\frac{3\pi}{2}}cos x - sin xdx = 2


Total=3,41

Agora a minha como passaram por aqui:

2\left(\int_{\frac{\pi}{4}}^{\pi}sin xdx - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}cos xdx \right)=4

Qual é a certa?

Obrigado!
Deivid
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Set 21, 2010 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral Sen quadrado e mais uma duvida

Mensagempor Marcampucio » Sáb Set 25, 2010 21:07

Imagem
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59