• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade

Probabilidade

Mensagempor DanielRJ » Seg Set 20, 2010 17:51

Olá to com uma questão muito dificil pra min então gostaria que alguem em ajudasse.

Em uma prova caíram dois problemas, A e B. Sabendo que 200 alunos acertaram A, 90 erraram B, 120 acertaram os dois e 100 acertaram apenas um problema, qual a probabilidade de que um aluno, escolhido ao acaso, não tenha acertado nenhum problema.

a)1/23
b)2/23
c)3/23
d)1/8
e)1/12
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Probabilidade

Mensagempor alexandre32100 » Seg Set 20, 2010 20:29

É aconselhável nestes casos usar um Diagrama de Venn, onde cada número representa aqueles que acertaram determinada questão, veja:
DIAGRAMA.PNG
é semprebom lembrar de sempre começar pelo "meio" do diagrama
DIAGRAMA.PNG (10.37 KiB) Exibido 6856 vezes

O número total de alunos é 20+120+80+10=230 e aqueles que não acertaram nenhuma questão, 10.
Assim, a probabilidade é \dfrac{10}{230}=\dfrac{1}{23} \rightarrow \text{alternativa a}.
alexandre32100
 

Re: Probabilidade

Mensagempor DanielRJ » Seg Set 20, 2010 22:00

alexandre32100 escreveu:É aconselhável nestes casos usar um Diagrama de Venn, onde cada número representa aqueles que acertaram determinada questão, veja:
DIAGRAMA.PNG

O número total de alunos é 20+120+80+10=230 e aqueles que não acertaram nenhuma questão, 10.
Assim, a probabilidade é \dfrac{10}{230}=\dfrac{1}{23} \rightarrow \text{alternativa a}.



Obrigado alexandre. mas minha dificuldade foi em montar os conjuntos. eu queria que voce me desse uma explicação rapida de onde sairam os 20 de B e os 10 de fora?
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Probabilidade

Mensagempor alexandre32100 » Ter Set 21, 2010 00:11

Tá, a parte dos 120 da interseção de A e B e dos 80 de A tá ok, né?
Os 20 de B tão aqui, olha
danielcdd escreveu:100 acertaram apenas um problema

Como 80 acertaram apenas A, quer dizer que 100-80=20 acertaram apenas B.
E os 10 de fora, aqui
danielcdd escreveu:90 erraram B

já que 80 acertaram apenas A, precisamos de mais 10 para completar esses 90 (já que os outros 120+20=140 acertaram o problema B).

Tranquilo agora?
alexandre32100
 

Re: Probabilidade

Mensagempor DanielRJ » Ter Set 21, 2010 12:53

alexandre32100 escreveu:Tá, a parte dos 120 da interseção de A e B e dos 80 de A tá ok, né?
Os 20 de B tão aqui, olha
danielcdd escreveu:100 acertaram apenas um problema

Como 80 acertaram apenas A, quer dizer que 100-80=20 acertaram apenas B.
E os 10 de fora, aqui
danielcdd escreveu:90 erraram B

já que 80 acertaram apenas A, precisamos de mais 10 para completar esses 90 (já que os outros 120+20=140 acertaram o problema B).

Tranquilo agora?



Bom muito obrigado realmente minha dificuldade é conjuntos vo estudar mais afundo essa materia, Mas eu compreendi o entendimento da questão muito obrigado mais uma duvida liquidada.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.