por JoaoGabriel » Sáb Set 18, 2010 11:01
Bom dia. Eu estava fazendo exercícios de equação modular quando me deparei com a seguinte equação:

Aí eu fiz para o valor do módulo positivo:



Esta seria uma das resposta porém quando eu olhei o gabarito a resposta era:

Como resolver para chegar nesta resposta? O

não pode assumir um valor menor que um negativo?
Grato pela atenção.
-

JoaoGabriel
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Ago 18, 2010 16:05
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Estudando para Engenharia Aeroespacial
- Andamento: cursando
por MarceloFantini » Sáb Set 18, 2010 13:39
É simples. Módulo significa DISTÂNCIA. Não existe distância negativa, logo conjunto vazio.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Molina » Sáb Set 18, 2010 13:41
Boa tarde.
Isso é uma "pegadinha" que passou despercebida por você. O módulo de qualquer coisa será sempre maior ou igual a zero, ou seja,

Não há nenhum valor de x para que o valor desse módulo dê
menor do que 2.
Ficou claro?

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por JoaoGabriel » Sáb Set 18, 2010 14:00
Entendi, muito obrigado. Já era o que eu imaginava.
-

JoaoGabriel
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Ago 18, 2010 16:05
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Estudando para Engenharia Aeroespacial
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação Modular] com equação de 2º grau
por paola-carneiro » Qui Abr 05, 2012 15:53
- 2 Respostas
- 3264 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 16:23
Funções
-
- Equação modular
por amandactdas » Qui Jul 23, 2009 13:14
- 1 Respostas
- 2702 Exibições
- Última mensagem por Molina

Qui Jul 23, 2009 15:26
Funções
-
- Equação Modular
por baianinha » Ter Mai 24, 2011 22:15
- 2 Respostas
- 1826 Exibições
- Última mensagem por LuizAquino

Sex Mai 27, 2011 22:05
Sistemas de Equações
-
- Equação Modular
por Rafael16 » Dom Mar 04, 2012 14:07
- 3 Respostas
- 1991 Exibições
- Última mensagem por LuizAquino

Seg Mar 05, 2012 14:23
Equações
-
- [Equação Modular]
por marilgomes » Sáb Jun 01, 2013 13:44
- 0 Respostas
- 880 Exibições
- Última mensagem por marilgomes

Sáb Jun 01, 2013 13:44
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.