• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação modular.

Equação modular.

Mensagempor JoaoGabriel » Sáb Set 18, 2010 11:01

Bom dia. Eu estava fazendo exercícios de equação modular quando me deparei com a seguinte equação:

|4x+1|<-2

Aí eu fiz para o valor do módulo positivo:

4x+1<-2

4x<-3

x<-3/4

Esta seria uma das resposta porém quando eu olhei o gabarito a resposta era:

S =  Conjunto Vazio

Como resolver para chegar nesta resposta? O x não pode assumir um valor menor que um negativo?

Grato pela atenção.
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando

Re: Equação modular.

Mensagempor MarceloFantini » Sáb Set 18, 2010 13:39

É simples. Módulo significa DISTÂNCIA. Não existe distância negativa, logo conjunto vazio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação modular.

Mensagempor Molina » Sáb Set 18, 2010 13:41

Boa tarde.

Isso é uma "pegadinha" que passou despercebida por você. O módulo de qualquer coisa será sempre maior ou igual a zero, ou seja,

|x| \geq 0

Não há nenhum valor de x para que o valor desse módulo dê menor do que 2.

Ficou claro?

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação modular.

Mensagempor JoaoGabriel » Sáb Set 18, 2010 14:00

Entendi, muito obrigado. Já era o que eu imaginava.
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}