por nayane » Qua Set 15, 2010 10:51
(UFBA) Quatro jogadores saíram de Manaus para um campeonato em Porto Alegre, num carro de 4 lugares. Dividiram o trajeto em 4 partes e aceitaram que cada um dirigiria uma vez. Combinaram também que, toda vez que houvesse mudança de motorista, todos deveriam trocar de lugar. O número de arrumações dos 4 jogadores durante toda a viagem é:
a) 4
b)8
c)12
d)24
e)162
Não consegui resolver, espero que me ajudem!!!!

Nayane
-

nayane
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Sex Set 10, 2010 10:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em ciências biológicas
- Andamento: cursando
por DanielRJ » Qua Set 15, 2010 12:50
OI amiga voce tem gabarito? eu fiz aqui e deu 24 só não sei se esta correto.vo colocar meu pensamento qualquer coisa espera um professor corrigir.Nomear os jogadores: (A,B,C,D)
Na primeira ida colocando um no volante. (A, X, X, X) eu posso permutar os tres ultimos.Logo

.e assim por diante logo dará resposta 24.
Num leva muita fé na minha resolução não. sou apenas um estudante vamos aguarda a correção de um professor.
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Neperiano » Qua Set 15, 2010 13:19
Ola
A resposta correta é 24
Pense são 4 lugares então 4 casas, e a cada 1/4 do passeio trocam de lugar, então:
_ _ _ _
4 3 2 1
Não poderia ser sempre 4 pois o jogador que estava na direção não pode voltar para a direçao denovo
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por nayane » Qui Set 16, 2010 11:52
Muito obrigada danielcdd, o gabarito é mesmo 24. Até a próxima.
Um abraço...
Nayane
-

nayane
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Sex Set 10, 2010 10:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em ciências biológicas
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Como proceder... estou com duvidas...
por Netolucena » Dom Mar 18, 2012 18:32
- 2 Respostas
- 1551 Exibições
- Última mensagem por Netolucena

Dom Mar 18, 2012 22:06
Cálculo: Limites, Derivadas e Integrais
-
- [triângulo retângulo/perímetro] Estou com dúvidas
por Camilla » Qui Nov 20, 2008 13:32
- 1 Respostas
- 5970 Exibições
- Última mensagem por Neperiano

Qui Nov 20, 2008 16:07
Geometria Plana
-
- Estou desesperada
por nayane » Sáb Set 11, 2010 20:39
- 3 Respostas
- 2161 Exibições
- Última mensagem por nayane

Sáb Set 11, 2010 21:36
Trigonometria
-
- Estou certo?
por Cleyson007 » Sáb Jun 09, 2012 13:01
- 1 Respostas
- 1397 Exibições
- Última mensagem por Molina

Sáb Jun 09, 2012 14:53
Cálculo: Limites, Derivadas e Integrais
-
- vejam se estou certo...
por weverton » Ter Jun 29, 2010 17:04
- 3 Respostas
- 3142 Exibições
- Última mensagem por weverton

Qua Jun 30, 2010 18:11
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.