• Anúncio Global
    Respostas
    Exibições
    Última mensagem

raizes

raizes

Mensagempor cristina » Qui Set 09, 2010 09:57

Bom dia, preciso de ajuda, não lembro como desenvolver potencia com fração...

Assinale todos os valores das raizes de {(-i)}^{\frac{1}{3}}
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: raizes

Mensagempor MarceloFantini » Qui Set 09, 2010 14:21

O que você quer é isto: z^3 = -i ? Caso contrário: (-i)^{\frac{1}{3}} = (i^3)^{\frac{1}{3}} = i .
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: raizes

Mensagempor cristina » Qui Set 09, 2010 16:56

Então Fantini, na correria acabei de colocar as alternativas....
a) \frac{1}{2}(-\sqrt[]{3}+ i)

b) \frac{1}{2}(\sqrt[]{3}- i)

c) \frac{1}{2}(\sqrt[]{3}+ i)

d) \frac{1}{2}(-\sqrt[]{3}- i)

e) i
f) - i

No exercicio pede pra assinalr os valores das raizes... tem mais de uma? neste caso...
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: raizes

Mensagempor MarceloFantini » Qui Set 09, 2010 17:52

Sim, tem mais de uma pois isso é z^3 +i = 0 disfarçadamente. Veja: z^3 +i = z^3 - i^3 = 0. Fatorando:

z^3 - i^3 = (z - i) \cdot (z^2 + iz + i^2) = 0

Portanto, uma das raízes é i. Vamos às outras:

z^2 +iz -1 = 0
\Delta = -1 -4 \cdot -1 = 3
z = \frac{-i \pm \sqrt{3} } {2}

z_1 = \frac{1}{2} \cdot (\sqrt{3} - i)
z_2 = \frac{1}{2} \cdot (- \sqrt{3} - i)

Alternativas B, D e E.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.