• Anúncio Global
    Respostas
    Exibições
    Última mensagem

raizes

raizes

Mensagempor cristina » Qui Set 09, 2010 09:57

Bom dia, preciso de ajuda, não lembro como desenvolver potencia com fração...

Assinale todos os valores das raizes de {(-i)}^{\frac{1}{3}}
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: raizes

Mensagempor MarceloFantini » Qui Set 09, 2010 14:21

O que você quer é isto: z^3 = -i ? Caso contrário: (-i)^{\frac{1}{3}} = (i^3)^{\frac{1}{3}} = i .
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: raizes

Mensagempor cristina » Qui Set 09, 2010 16:56

Então Fantini, na correria acabei de colocar as alternativas....
a) \frac{1}{2}(-\sqrt[]{3}+ i)

b) \frac{1}{2}(\sqrt[]{3}- i)

c) \frac{1}{2}(\sqrt[]{3}+ i)

d) \frac{1}{2}(-\sqrt[]{3}- i)

e) i
f) - i

No exercicio pede pra assinalr os valores das raizes... tem mais de uma? neste caso...
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: raizes

Mensagempor MarceloFantini » Qui Set 09, 2010 17:52

Sim, tem mais de uma pois isso é z^3 +i = 0 disfarçadamente. Veja: z^3 +i = z^3 - i^3 = 0. Fatorando:

z^3 - i^3 = (z - i) \cdot (z^2 + iz + i^2) = 0

Portanto, uma das raízes é i. Vamos às outras:

z^2 +iz -1 = 0
\Delta = -1 -4 \cdot -1 = 3
z = \frac{-i \pm \sqrt{3} } {2}

z_1 = \frac{1}{2} \cdot (\sqrt{3} - i)
z_2 = \frac{1}{2} \cdot (- \sqrt{3} - i)

Alternativas B, D e E.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59