por jeffersonricardo » Seg Set 06, 2010 15:20
plote as circunferências num mesmo sistema de eixos e passe para o papel, a região cujo ponte tem coordenadas que satisfazem o sitema de equação


essas duas equações formam um sistema
-
jeffersonricardo
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Ago 16, 2010 15:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletronica e de telecunicaçao
- Andamento: cursando
por MarceloFantini » Seg Set 06, 2010 15:23
É a região interna ao disco de raio 3 sem a borda e externa ao disco de raio 2 incluindo a borda.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jeffersonricardo » Seg Set 06, 2010 15:25
não entendi
tem como mostrar com calculo
desde ja agradeço
-
jeffersonricardo
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Ago 16, 2010 15:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletronica e de telecunicaçao
- Andamento: cursando
por MarceloFantini » Seg Set 06, 2010 15:35
Não, você tem que desenhar.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jeffersonricardo » Seg Set 06, 2010 17:02
Fantini
se tiver como olha se a resposta deste esta certa
o enunciado e o mesmo do 1


esta duas também formam um sistema
a resposta seria região interna da circunferência

sem a borda e a borda da circunferência

incluída sem a intersecção.
-
jeffersonricardo
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Ago 16, 2010 15:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletronica e de telecunicaçao
- Andamento: cursando
por jeffersonricardo » Seg Set 06, 2010 17:02
Fantini
se tiver como olha se a resposta deste esta certa
o enunciado e o mesmo do 1


esta duas também formam um sistema
a resposta seria região interna da circunferência

sem a borda e a borda da circunferência

incluída sem a intersecção.
Editado pela última vez por
jeffersonricardo em Seg Set 06, 2010 17:08, em um total de 2 vezes.
-
jeffersonricardo
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Ago 16, 2010 15:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletronica e de telecunicaçao
- Andamento: cursando
por jeffersonricardo » Seg Set 06, 2010 17:05
Fantini desde ja agradeço
-
jeffersonricardo
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Seg Ago 16, 2010 15:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletronica e de telecunicaçao
- Andamento: cursando
por MarceloFantini » Seg Set 06, 2010 17:14
Não, a resposta é a região exterior (incluindo a borda) ao disco de raio 2 e centro na origem e interna ao disco de raio 2 e centro em (2, -2), sem incluir a borda.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [circunferência] Questão de reta secante a circunferência
por danielleecb » Qui Jun 07, 2012 23:26
- 1 Respostas
- 1756 Exibições
- Última mensagem por MarceloFantini

Sex Jun 08, 2012 12:24
Geometria Analítica
-
- Circunferência
por ilovemat » Sex Abr 03, 2009 19:12
- 5 Respostas
- 9288 Exibições
- Última mensagem por Marcampucio

Seg Abr 06, 2009 20:11
Trigonometria
-
- circunferencia
por cosme » Qua Nov 17, 2010 09:29
- 2 Respostas
- 1712 Exibições
- Última mensagem por MarceloFantini

Qua Nov 17, 2010 15:11
Trigonometria
-
- Circunferência
por Pri Ferreira » Qua Nov 09, 2011 21:02
- 1 Respostas
- 1221 Exibições
- Última mensagem por LuizAquino

Qui Nov 10, 2011 20:29
Funções
-
- Circunferencia
por Thays » Qui Jan 19, 2012 16:08
- 4 Respostas
- 2204 Exibições
- Última mensagem por Thays

Qui Jan 19, 2012 16:54
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.