• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor PeIdInHu » Qua Jul 07, 2010 22:35

\lim_{x\rightarrow\frac{\pi}{4}} \frac{4x -\pi}{cos(2x)}


È do tipo indeterminado...porem estava tentando fazer sem L´Hopital por causa do \pi ... e nao consegui de maneira nenhuma... sempre chegando no resultado = 0 porem no gabarito do professor ta = -2.
help.. =)
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: Limite

Mensagempor Douglasm » Qua Jul 07, 2010 23:42

O negócio é usar o L'Hopital mesmo:

Derivando as duas equações chegamos ao novo limite (que é igual ao anterior):

\lim_{x\rightarrow \frac{\pi}{4}} \frac{4}{-2sen2x} = \frac{4}{-2sen\frac{\pi}{2}} = -2
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Limite

Mensagempor Tom » Qui Jul 08, 2010 01:31

Eis a resolução sem aplicação do Teorema de L'Hospital:

\lim_{x\rightarrow\frac{\pi}{4}} \frac{4x -\pi}{cos(2x)}=\lim_{x\rightarrow\frac{\pi}{4}} \frac{-2(\frac{\pi}{2}-2x)}{cos(2x)}=\lim_{x\rightarrow\frac{\pi}{4}} \frac{-2(\frac{\pi}{2}-2x)}{sen(\frac{\pi}{2}-2x)}=-2.\lim_{x\rightarrow\frac{\pi}{4}} \frac{\frac{\pi}{2}-2x}{sen(\frac{\pi}{2}-2x)} ,e mediante aplicação do limite fundamental

\lim_{x\rightarrow 0} \frac{x}{sen(x)}=1, obtemos: \lim_{x\rightarrow\frac{\pi}{4}} \frac{4x -\pi}{cos(2x)}=-2.1=-2, de fato.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Limite

Mensagempor PeIdInHu » Sex Jul 09, 2010 23:00

nsss bem interesante a resoluçao do Tom ....vlws...
porem tive uma curiosidade nesse outro exercicio sobre essa resoluçao

\lim_{x\rightarrow \frac{-\pi}{2}} \frac{4x+\pi}{cos(2x)}

tipo nao é do tipo indeterminado entaum...vc pode jogar direto o valor em x ou desenvolver o cos(x+x) que é arco duplo....das duas maneiras o resultado = \pi ....... ai tipo tentei fazer do geito do Tom nesse exercicio...

\lim_{x\rightarrow \frac{-\pi}{2}} \frac{4x+\pi}{cos(2x)} ========>

\lim_{x\rightarrow \frac{-\pi}{2}} \frac{2(2x+\frac{\pi}{2})}{sen(2x+\frac{\pi}{2})}= 2.1 =2

sendo que a resposta é =\pi, alguem poderia tirar minah duvida,talvez algo q esteja errado
brass
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: Limite

Mensagempor Tom » Sáb Jul 10, 2010 00:26

O erro está no fato de que apenas \lim_{x\rightarrow 0} \frac{x}{sen(x)}=1, e no caso dessa questão, quando substituímos \dfrac{-\pi}{2} no limite não obtemos \dfrac{0}{sen(0)} portanto você nao pode igualar o quociente a 1,como fez.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.