• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor PeIdInHu » Qua Jul 07, 2010 22:35

\lim_{x\rightarrow\frac{\pi}{4}} \frac{4x -\pi}{cos(2x)}


È do tipo indeterminado...porem estava tentando fazer sem L´Hopital por causa do \pi ... e nao consegui de maneira nenhuma... sempre chegando no resultado = 0 porem no gabarito do professor ta = -2.
help.. =)
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: Limite

Mensagempor Douglasm » Qua Jul 07, 2010 23:42

O negócio é usar o L'Hopital mesmo:

Derivando as duas equações chegamos ao novo limite (que é igual ao anterior):

\lim_{x\rightarrow \frac{\pi}{4}} \frac{4}{-2sen2x} = \frac{4}{-2sen\frac{\pi}{2}} = -2
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Limite

Mensagempor Tom » Qui Jul 08, 2010 01:31

Eis a resolução sem aplicação do Teorema de L'Hospital:

\lim_{x\rightarrow\frac{\pi}{4}} \frac{4x -\pi}{cos(2x)}=\lim_{x\rightarrow\frac{\pi}{4}} \frac{-2(\frac{\pi}{2}-2x)}{cos(2x)}=\lim_{x\rightarrow\frac{\pi}{4}} \frac{-2(\frac{\pi}{2}-2x)}{sen(\frac{\pi}{2}-2x)}=-2.\lim_{x\rightarrow\frac{\pi}{4}} \frac{\frac{\pi}{2}-2x}{sen(\frac{\pi}{2}-2x)} ,e mediante aplicação do limite fundamental

\lim_{x\rightarrow 0} \frac{x}{sen(x)}=1, obtemos: \lim_{x\rightarrow\frac{\pi}{4}} \frac{4x -\pi}{cos(2x)}=-2.1=-2, de fato.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Limite

Mensagempor PeIdInHu » Sex Jul 09, 2010 23:00

nsss bem interesante a resoluçao do Tom ....vlws...
porem tive uma curiosidade nesse outro exercicio sobre essa resoluçao

\lim_{x\rightarrow \frac{-\pi}{2}} \frac{4x+\pi}{cos(2x)}

tipo nao é do tipo indeterminado entaum...vc pode jogar direto o valor em x ou desenvolver o cos(x+x) que é arco duplo....das duas maneiras o resultado = \pi ....... ai tipo tentei fazer do geito do Tom nesse exercicio...

\lim_{x\rightarrow \frac{-\pi}{2}} \frac{4x+\pi}{cos(2x)} ========>

\lim_{x\rightarrow \frac{-\pi}{2}} \frac{2(2x+\frac{\pi}{2})}{sen(2x+\frac{\pi}{2})}= 2.1 =2

sendo que a resposta é =\pi, alguem poderia tirar minah duvida,talvez algo q esteja errado
brass
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: Limite

Mensagempor Tom » Sáb Jul 10, 2010 00:26

O erro está no fato de que apenas \lim_{x\rightarrow 0} \frac{x}{sen(x)}=1, e no caso dessa questão, quando substituímos \dfrac{-\pi}{2} no limite não obtemos \dfrac{0}{sen(0)} portanto você nao pode igualar o quociente a 1,como fez.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}