• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Função

Dúvida Função

Mensagempor vb_evan » Sáb Jul 03, 2010 09:18

Tenho este problema de uma frequência, porém não compreendo o que é pedido:

Sabendo que a função f é contínua em |R e:

f'(x)=\frac{2}{4+(x-2)^{2}} , x\geq1

f'(x)=\frac{1}{{x}^{2}}   , x<1

f(1)=\pi

qual será a expressão de f que satisfaz as condições acima?


Já substitui o x por 1, mas nenhuma função me dá o pi....e não vejo outra forma de descobrir a função! (será que tenho de igualar uma expressão por pi?)

Agradecia muito uma ajuda da vossa parte
vb_evan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 06, 2010 15:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: cursando

Re: Dúvida Função

Mensagempor MarceloFantini » Sáb Jul 03, 2010 15:41

Você tem que integrar as expressões pra x>= 1 e x<1, com a condição de que f(1) = \pi.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dúvida Função

Mensagempor vb_evan » Dom Jul 04, 2010 07:37

É possível exemplificar para uma das funções?
vb_evan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 06, 2010 15:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: cursando

Re: Dúvida Função

Mensagempor Tom » Ter Jul 06, 2010 00:59

Se f' é definida por duas leis mediante o intervalo do conjunto domínio, então f também o será. Assim:


i)Para x\ge1:

Se f'(x)=\frac{2}{4+(x-2)^{2}}

f=\int\frac{2}{4+(x-2)^{2}}=\int\dfrac{2}{4}\times\dfrac{1}{1+(\frac{x-2}{2})^2}=\frac{1}{2}\int\frac{1}{1+(\frac{x-2}{2})^2}=\frac{1}{2}\int\frac{2[\frac{x-2}{2}]'}{1+(\frac{x-2}{2})^2}=

\int\frac{[\frac{x-2}{2}]'}{1+(\frac{x-2}{2})^2}=arctg(\frac{x-2}{2})+C_1


ii) Para x<1:

Se f'(x)=\frac{1}{{x}^{2}}

f=\int\frac{1}{{x}^{2}}=\frac{-1}{x}+C_2


Além disso f é contínua. Portanto os limites laterais de f quando x\rightarrow1 devem ser iguais. Então:

Pela direita: f(1)=arctg(\frac{1-2}{2})+C_1=\pi\rightarrow C_1=\pi-arctg(\frac{-1}{2})

Pela esquerda: f(1)=\frac{-1}{1}+C_2=\pi\rightarrow C_2=\pi+1



Assim,

f(x)=arctg(\frac{x-2}{2})+\pi-arctg(\frac{-1}{2}) , se x\ge1

f(x)=\frac{-1}{x}+\pi+1, se x<1
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Dúvida Função

Mensagempor vb_evan » Qua Jul 07, 2010 09:35

Obrigado tom ;)
vb_evan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 06, 2010 15:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.