• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão (MACKENZIE)

Questão (MACKENZIE)

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 12:04

Sendo S= 1+2x+3x^2+... (0<x<1), pode-se afirmar que..?

gabarito: S= \frac{1}{(1-x)^2}
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão (MACKENZIE)

Mensagempor Elcioschin » Qua Jun 16, 2010 13:32

1 + 2x + 3x² + 4x³ + .....

1 + (x + x) + (x² + 2x²) + (x³ + 3x³) + .....

(1 + x + x² + x³ + ....) + (x + 2x² + 3x³ + .....)

Soma dos termos do primeiro parenteses é uma PG infinita de razão x ----> Sa = 1/(1- x)

Segundo parenteses ----> x + 2x² + 3x³ + .....

x + (x² + x²) + (x³ + 2x³) + .....

(x + x² + x³ + ....) + (x² + x³ + .....)

Soma dos termos do primeiro parenteses é uma PG infinta de razão x ----> Sb = x/(1- x)

Segundo parenteses ----> x² + 2x³ + .......

x² + (x³ + x³) + .....

(x² + x³ + .....) + (x³ + .....)

Soma dos termos do primeiro parenteses é uma PG infinita de razão x----> Sc = x²/(1- x)

E assim por diante, teremos ----> S = Sa + Sb + Sc + ...... ----> S = 1/(1 - x) + x/(1 - x) + x²/(1 - x) + .....

Temos uma nova PG infinta de razão x -----> S = [(1/(1 - x)]/(1 - x) -----> S = 1/(1 - x)²
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?