por funerius » Ter Jun 08, 2010 20:24
Olá pessoal, sou novo aqui, estava resolvendo questões de matemática básica mas sou MUITO fraco no assunto, gostaria de pedir a ajuda de vocês. Deixo aqui algumas questões que me deixaram desiludido:
(Tec. Cont.-SC) A caixa de água de uma casa tem capacidade de armazenamento de 2.000 litros. Sabendo que ela possui base quadrada, com 1 metro de lado, assunale a alternativa que indica a altura desta caixa de água.
a) 2 metros (resposta)
b) 20 metros
c) 2 centímetros
d) 2 decímetros
e) 20.000 centímetros
Tentei resolvê-la da seguinte maneira:
se 1litro é igual a 1dm³, e em um quadrado os lados são iguais, então
capacidade = lado1 x lado2 x altura
2000dm³ = 0,1dm x 0,1dm x Altura
Altura = 2000dm³ / 0,01dm²
Altura = 200000dm (ou 20000cm, como na opção do gabarito, mas que não é a certa)
é aqui que eu encalho.. onde eu errei, como chegar em "2m", a resposta da questão, alguem pode me dizer?
(CVM) Um reservatório tem 1,2 m de largura, 1,5 m de comprimento e 1 metro de altura. Para conter 1.260 litros de água, esta deve atingir a altura de:
a) 70 cm (resposta)
b) 0,07 m
c) 7 m
d) 0,7 dm
e) 700 cm
0,12dm x 0,15dm x Altura = 1260dm³
Altura = 1260 / 0,18
Altura = 7000dm (ou 700cm, mas está errado, o gabarito é 70cm)
Quem puder me ajudar, eu agradeço, vlw!
-
funerius
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jun 08, 2010 17:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Comunicação
- Andamento: formado
por MarceloFantini » Qua Jun 09, 2010 20:53
Aqui está como converter:

. Elevando os dois lados ao cubo:

. Como

, isso implica que

.
Assim,

No segundo caso, você errou na conta:

, o que daria 700 dm , consequentemente 70 cm.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por funerius » Qui Jun 10, 2010 20:31
Muito obrigado amigo,
sua explicação me foi muito útil!

-
funerius
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jun 08, 2010 17:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Comunicação
- Andamento: formado
Voltar para Conversão de Unidades
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- sistema de medidas
por vania a » Qua Set 07, 2011 16:41
- 1 Respostas
- 1632 Exibições
- Última mensagem por Lelia

Qua Set 07, 2011 17:09
Conversão de Unidades
-
- Sistema de medida - medida de área
por Igra » Qui Abr 11, 2013 09:53
- 2 Respostas
- 4744 Exibições
- Última mensagem por Igra

Sex Abr 12, 2013 19:37
Conversão de Unidades
-
- medidas
por thayna » Sáb Out 23, 2010 12:08
- 1 Respostas
- 2290 Exibições
- Última mensagem por VtinxD

Dom Out 24, 2010 00:38
Geometria Plana
-
- Medidas
por Walquiria » Dom Nov 06, 2011 19:30
- 2 Respostas
- 1971 Exibições
- Última mensagem por Walquiria

Seg Nov 07, 2011 19:03
Estatística
-
- medidas
por ana celia » Qua Set 12, 2012 17:57
- 5 Respostas
- 3073 Exibições
- Última mensagem por Cleyson007

Qui Set 13, 2012 10:47
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.