• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldades em funções

Dificuldades em funções

Mensagempor DaniellaFlavia » Dom Mai 30, 2010 14:02

Estou com dificuldade em funções, sempre fui boa aluna mas agora sei lá... A sala toda está com dificuldade achamos que é o professor mas ele diz que não e ai fico na mesma não sei a matéria. Como não quero levar bomba me ajudem.

1) Sendo f(x)=23.x^2-1 e g(x)=23.x+3, determine:

a)f[g(x)]

b)g[f(x)]

Se puder fazer passo a passo para que eu consiga mesmo aprender agradeço
Não sei pq está aparecendo esse A grande, ele não existe é x ao quadrado apenas
Editado pela última vez por DaniellaFlavia em Dom Mai 30, 2010 14:18, em um total de 1 vez.
DaniellaFlavia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 30, 2010 13:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldades em funções

Mensagempor Neperiano » Dom Mai 30, 2010 14:05

Ola

Na a voce deve copiar a função f e substituir o x pelo valor de g(x), ou seja:

23(23x+3)A^2-1

Olha eu não sei o que é o A grande por isso não poderei ajudar na resolução

Na b ao contrario

23(23xA^2-1)+3

Primeiro resolva os parenteses e multiplique

Espero ter ajudado

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Dificuldades em funções

Mensagempor DaniellaFlavia » Dom Mai 30, 2010 14:36

Não sei pq está aparecendo aquele A grande, mas é apenas x ao quadrado.
Obrigado pela força
DaniellaFlavia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 30, 2010 13:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldades em funções

Mensagempor Molina » Dom Mai 30, 2010 14:46

Arrumei essa questão do "A grande".

Aparece esse "A" por causa do uso do LaTeX. Quando você usar [tex] e [/tex], você não pode usar o ², senão aparece aquele "A".

Modo que você escreveu: [tex]f(x)=23.x²-1[/tex] (modo errado)

Modo que tem que ser escrito: [tex]f(x)=23.x^2-1[/tex] (modo correto)

Qualquer dúvida quanto a digitação do LaTeX me procure!


E sobre a questão, conseguiu entender como resolvê-la?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Dificuldades em funções

Mensagempor DaniellaFlavia » Dom Mai 30, 2010 14:50

Não consegui, vc pode me ajudar no passo a passo E obrigado pela explicação do LaTeX.
DaniellaFlavia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 30, 2010 13:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldades em funções

Mensagempor Molina » Dom Mai 30, 2010 15:19

DaniellaFlavia escreveu:Não consegui, vc pode me ajudar no passo a passo E obrigado pela explicação do LaTeX.

Ok, Daniella.

Você tem duas funções: f(x)=23x^2-1 e g(x)=23x+3

Numa função, tudo que tiver dentro do parênteses de f(_) nós substituiremos na função. Por exemplo:

f(x)=23x^2-1 (f de x)
f(a)=23a^2-1 (f de a)
f(\Phi)=23\Phi^2-1 (f de phi)
f(\circ)=23\circ^2-1 (f de bolinha)
.
.
.
E assim por diante.

a)f[g(x)]

Na questão a) ele que o f de g(x). Então o que faremos? Substituiremos, como fizemos a cima, o x por g(x):

f[g(x)]=23g(x)^2-1 (f de g(x))

Só que temos o valor de g(x), então substituiremos g(x) por 23x+3:

f[g(x)]=23g(x)^2-1
f[g(x)]=23*(23x+3)^2-1
f[g(x)]=23*(529x^2+138x+9)-1
f[g(x)]=12167x^2+3174x+206

E acabou! Agora faça o mesmo procedimento com a letra b)

Qualquer dúvida, escreva aqui!

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Dificuldades em funções

Mensagempor DaniellaFlavia » Dom Mai 30, 2010 16:10

Em outra questão , tenho x^2 - x + 1
terei de substituir o x^2 pelo valor de g ?
DaniellaFlavia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 30, 2010 13:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.