• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas - equação da reta

Derivadas - equação da reta

Mensagempor apotema2010 » Sex Mai 21, 2010 12:51

As equaçoes das retas tntentes ao gráfico de g definida por g(x)=-o,5x³ e paralelas à reta 6x+y+4=0 dão dadas por:
Tenho quase toda a resolução, mas preciso de esclarecimentos:
g(x)=-3/2x² (de onde saiu esse valor???)
6x+y+4=0
y=-6x-4
daí pula para -3/2x²=-6 (de onde veio ???)
resolvendo deu: x²=4 então x= +2 e x'=-2
aí vai pra equação da reta:
y-y°=m(x-x°)
y+-(-4) de onde veio o -4???=m(x-2)
uma das respostas:
y=-6x+8

Help me
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivadas - equação da reta

Mensagempor Neperiano » Sex Mai 21, 2010 14:14

Ola

Vou tentar ajudar no que puder

Quanto ao primeiro valor

g(x)=-3/2x^2 isto seria a derivada de g(x)=-0,5x^3, se voce não souber isto é bom dar uma lida em derivada.

Quanto a -3/2x^2=-6 acredito que ela veio da reta y=6x-4,

E o -4 veio desta equação acima tambem.

Espero ter ajudado
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Derivadas - equação da reta

Mensagempor apotema2010 » Sex Mai 21, 2010 15:32

É, acho q meu problema começa com derivada, posso abusar e pedir um passo a passo mais detalhado???
Desde já te agradeço por responder.
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Derivadas - equação da reta

Mensagempor Neperiano » Sex Mai 21, 2010 16:20

Ola

Tudo bem

A derivada seria a reta tangente de um ponto, para calcular isto a uma enorme formula que não vou mencionar aqui, entretanto há outras formulas a usar, quando a equação tem uma potencia como essa, basta passar o valor da potencia multiplicando o numero e diminuir um na potencia. Ex: 2x^3 = 6x^2

Neste caso:

-0,5x^3 = -3/2 ou -1,5x^2

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Derivadas - equação da reta

Mensagempor admin » Sex Mai 21, 2010 16:37

Maligno escreveu:A derivada seria a reta tangente de um ponto,


Olá! Apenas um comentário, cuidado com as definições. Derivada não é a reta tangente, há muita confusão sobre...
As retas tangentes estão relacionadas ao conceito de derivada sim, mas derivada é o coeficiente angular da reta tangente no ponto, ou seja, ela determina a inclinação da reta.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Derivadas - equação da reta

Mensagempor Neperiano » Sex Mai 21, 2010 17:12

Ola

Obrigado fabiosousa realmente me passei um pouco

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Derivadas - equação da reta

Mensagempor apotema2010 » Sex Mai 21, 2010 17:57

Puxa, obrigada, com uma explicação de vcs foi mais fácil "ver" o significado desse problema, não adiantava ter a resolução sem entender.
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59