por apotema2010 » Sex Mai 21, 2010 12:51
As equaçoes das retas tntentes ao gráfico de g definida por g(x)=-o,5x³ e paralelas à reta 6x+y+4=0 dão dadas por:
Tenho quase toda a resolução, mas preciso de esclarecimentos:
g(x)=-3/2x² (de onde saiu esse valor???)
6x+y+4=0
y=-6x-4
daí pula para -3/2x²=-6 (de onde veio ???)
resolvendo deu: x²=4 então x= +2 e x'=-2
aí vai pra equação da reta:
y-y°=m(x-x°)
y+-(-4) de onde veio o -4???=m(x-2)
uma das respostas:
y=-6x+8
Help me
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Neperiano » Sex Mai 21, 2010 14:14
Ola
Vou tentar ajudar no que puder
Quanto ao primeiro valor
g(x)=-3/2x^2 isto seria a derivada de g(x)=-0,5x^3, se voce não souber isto é bom dar uma lida em derivada.
Quanto a -3/2x^2=-6 acredito que ela veio da reta y=6x-4,
E o -4 veio desta equação acima tambem.
Espero ter ajudado
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por apotema2010 » Sex Mai 21, 2010 15:32
É, acho q meu problema começa com derivada, posso abusar e pedir um passo a passo mais detalhado???
Desde já te agradeço por responder.
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Neperiano » Sex Mai 21, 2010 16:20
Ola
Tudo bem
A derivada seria a reta tangente de um ponto, para calcular isto a uma enorme formula que não vou mencionar aqui, entretanto há outras formulas a usar, quando a equação tem uma potencia como essa, basta passar o valor da potencia multiplicando o numero e diminuir um na potencia. Ex: 2x^3 = 6x^2
Neste caso:
-0,5x^3 = -3/2 ou -1,5x^2
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por admin » Sex Mai 21, 2010 16:37
Maligno escreveu:A derivada seria a reta tangente de um ponto,
Olá! Apenas um comentário, cuidado com as definições. Derivada
não é a reta tangente, há muita confusão sobre...
As retas tangentes estão relacionadas ao conceito de derivada sim, mas derivada é o
coeficiente angular da reta tangente no ponto, ou seja, ela determina a
inclinação da reta.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Neperiano » Sex Mai 21, 2010 17:12
Ola
Obrigado fabiosousa realmente me passei um pouco
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por apotema2010 » Sex Mai 21, 2010 17:57
Puxa, obrigada, com uma explicação de vcs foi mais fácil "ver" o significado desse problema, não adiantava ter a resolução sem entender.
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Achar equaçao da reta (Derivadas)
por ewald » Qui Jun 02, 2011 19:10
- 6 Respostas
- 3591 Exibições
- Última mensagem por Fabio Cabral

Ter Jun 07, 2011 10:47
Cálculo: Limites, Derivadas e Integrais
-
- [Equação da reta Tangente] derivadas
por lucasdemirand » Qua Ago 07, 2013 00:28
- 1 Respostas
- 1992 Exibições
- Última mensagem por young_jedi

Qua Ago 07, 2013 20:12
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Encontrar a equação da reta tangente
por MrJuniorFerr » Qua Out 17, 2012 12:01
- 1 Respostas
- 2184 Exibições
- Última mensagem por MarceloFantini

Qua Out 17, 2012 12:21
Cálculo: Limites, Derivadas e Integrais
-
- [Equação da Reta] Reta que passa por pontos do plano.
por acorreia » Qua Mai 02, 2012 17:31
- 1 Respostas
- 2309 Exibições
- Última mensagem por Russman

Qua Mai 02, 2012 21:25
Geometria Analítica
-
- [Estudo da reta] Determinar a equação de uma reta
por Isabelagarcia » Qui Jul 24, 2014 23:45
- 0 Respostas
- 1472 Exibições
- Última mensagem por Isabelagarcia

Qui Jul 24, 2014 23:45
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.