• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor EulaCarrara » Qua Mai 05, 2010 16:14

Estou finalizando um capítulo da matéria de derivadas e deparei com o exercício:

- Encontre todos os valores de x nos quais a reta tangente à curva dada satisfaz a propriedade enunciada:

y = \frac{x^2 -1} {x+2} . Horizontal

----

y = \frac{x+3} {x+2} . Perpendicular à reta y = x

.

São vários, porém parecidos.. Peguei os 02 mais "diferentes".

Agradeço a quem puder ajudar. ;)
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Derivada

Mensagempor EulaCarrara » Qua Mai 05, 2010 17:10

:)
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Derivada

Mensagempor EulaCarrara » Qua Mai 05, 2010 19:22

Alguém please :~
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Derivada

Mensagempor Molina » Qua Mai 05, 2010 20:55

Boa noite.

EulaCarrara escreveu:y = \frac{x^2 -1} {x+2} . Horizontal


A reta tangente horizontal significa que a derivada é zero.

Então derive y e iguale a 0. Os valores de x que satisfazem essa equação é a resposta do seu problema!

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Derivada

Mensagempor EulaCarrara » Qua Mai 05, 2010 21:05

Olá molina! Obrigada! Eu não tinha pensado nisso...
Mas e quanto à perpedicularidade de:

EulaCarrara escreveu:y = \frac{x+3} {x+2} . Perpendicular à reta y = x

EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Derivada

Mensagempor EulaCarrara » Qua Mai 05, 2010 22:23

:?:
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Derivada

Mensagempor Molina » Qui Mai 06, 2010 00:15

EulaCarrara escreveu:y = \frac{x+3} {x+2} . Perpendicular à reta y = x


A reta y=x tem reta tangente igual a 1. (alguma dúvida?)

Como ele quer perpendicular a x=y, então a reta tangente tem que ser -1.

Isso é mais fácil de ver se você perceber que as retas y_1=x e y_2=-x são perpendiculares.

Finalizando, iguale y a -1.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59