Suponha que, dentro de um certo horizonte de tempo, a taxa de retorno de uma açào se comporte, aproximadamente, como uma varíavel aleatória com distribuição normal. Considere ainda que a taxa média de retorno desta ação seja 18% com desvio padrão de 2%. Alternativamente existe uma outra apicação, um titulo de renda fixa com taxa de retorno de 15%. A dualidade entre o risco e rentabilidade se impõe ao investidor que deve decidir entre as duas aplicações.
a) Qual a probabilidade de um investidor aplicar $5000 nesta ação e resgatar $ 6050?
b) Qual a probabilidade de um investidor lucrar $560 ao aplicar $4000 nesta ação?
c) Qual a probabilidade de, ao aplicar $5000, um investidor resgatar um montante entre $5700 e $ 6100?
d) Se um invesidor opta pelo risco, isto é, pela aplicação na ação, qual a probabilidade dele obter mais rentabilidade do que o outro investidor mais conservador?
e) Determine a rentabilidade mínima para o titulo de renda fixa de forma que a probabilidade para que este investidor de risco tenha no maximo 5% de chance de obter menor rentabilidade do que o investidor conservador.



![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.