por veldri » Seg Abr 26, 2010 23:46
Gostaria da uma ajuda para resolver esse problema abaixo. Muito Obrigada!!!
Suponha que, dentro de um certo horizonte de tempo, a taxa de retorno de uma açào se comporte, aproximadamente, como uma varíavel aleatória com distribuição normal. Considere ainda que a taxa média de retorno desta ação seja 18% com desvio padrão de 2%. Alternativamente existe uma outra apicação, um titulo de renda fixa com taxa de retorno de 15%. A dualidade entre o risco e rentabilidade se impõe ao investidor que deve decidir entre as duas aplicações.
a) Qual a probabilidade de um investidor aplicar $5000 nesta ação e resgatar $ 6050?
b) Qual a probabilidade de um investidor lucrar $560 ao aplicar $4000 nesta ação?
c) Qual a probabilidade de, ao aplicar $5000, um investidor resgatar um montante entre $5700 e $ 6100?
d) Se um invesidor opta pelo risco, isto é, pela aplicação na ação, qual a probabilidade dele obter mais rentabilidade do que o outro investidor mais conservador?
e) Determine a rentabilidade mínima para o titulo de renda fixa de forma que a probabilidade para que este investidor de risco tenha no maximo 5% de chance de obter menor rentabilidade do que o investidor conservador.
-
veldri
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Seg Abr 26, 2010 23:41
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciencias Contabeis
- Andamento: cursando
por rassis46 » Ter Abr 27, 2010 20:13
a) 0,001305
b) 0,000667
c) 0,9545
d) 0,933193
e) 0,147103
-
rassis46
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Abr 15, 2010 19:35
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Doutoramento em Engenharia mecânica
- Andamento: formado
por MarceloFantini » Ter Abr 27, 2010 20:18
Rassis, explique como chegou nos resultados. O objetivo do fórum não é resolver listas de exercícios, e sim ensinar o método e o conceito para que os usuários possam aprender e resolver outros sozinhos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por rassis46 » Ter Abr 27, 2010 21:41
a) Juro conseguido com 6.050: (6.050 – 5.000)/5.000 = 0,21
Juro conseguido se tivesse ganho 6.050 – 1 = 6.049: (6.049 – 5.000)/5.000 = 0,2098
P(j <= 0,21) = 0,933193 (fazendo Z = (0,21 – 0,18)/0,02 e procurando P(Z) numa tabela da Normal reduzida)
P(j <= 0,2098) = 0,931888 (seguindo o mesmo procedimento que acima)
P (0,2098 <= j <= 0,21) = 0,001305
b) Juro conseguido com 4.000 + 560 = 4.560: (4.560 – 4.000)/4.000 = 0,14
Juro conseguido se tivesse ganho 4.560 – 1 = 4.559: (4.559 – 4.000)/4.000 = 0,13975
P(j <= 0,14) = 0,02275 (seguindo o mesmo procedimento que acima)
P(j <= 0,13975) = 0,022084 (seguindo o mesmo procedimento que acima)
P (0,022084 <= j <= 0,2275) = 0,000667
c) Juro conseguido com 5.700: (5.700 – 5.000)/5.000 = 0,14
Juro conseguido com 6.100: (6.100 – 5.000)/5.000 = 0,22
P(j <= 0,14) = 0,02275 (seguindo o mesmo procedimento que acima)
P(j <= 0,22) = 0,97725 (seguindo o mesmo procedimento que acima)
P (0,14 <= j <= 0,22) = 0,9545
d) (0,15 - 0,18)/0,02 = -1,5
De uma tabela da Normal reduzida, tira-se que: P(Z <= -1,5) = 0,066807, donde P(Z > -1,5) ou P(j > 0,15) = 1 – 0,066807 = 0,933193
e) Z(0,05) = -1,64485 (procurando Z na tabela da Normal reduzida correspondente a P = 0,05)
j = -1,64485 x 0,02 + 0,18 = 0,147103
-
rassis46
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Abr 15, 2010 19:35
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Doutoramento em Engenharia mecânica
- Andamento: formado
por veldri » Qua Abr 28, 2010 00:00
Muito Obrigada Rassis46, vc salvou minha vida, tentei de todas a maneiras resolver e não tava conseguindo pois o professor passou o trabalho sem nunhuma explicação de como fazer.
Muito Obrigada, Beijosss

-
veldri
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Seg Abr 26, 2010 23:41
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciencias Contabeis
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Estatistica - devsio padrao, probabilidade e nivel de confia
por nandabhz » Dom Jun 03, 2012 13:50
- 1 Respostas
- 3380 Exibições
- Última mensagem por nandabhz

Dom Jun 03, 2012 13:56
Estatística
-
- Distribuição Normal Padrão
por tatieures » Dom Abr 10, 2011 17:16
- 4 Respostas
- 2921 Exibições
- Última mensagem por tatieures

Dom Abr 10, 2011 21:26
Estatística
-
- Distribuição Normal Padrão
por doug_arantes » Seg Mar 04, 2013 23:42
- 0 Respostas
- 1843 Exibições
- Última mensagem por doug_arantes

Seg Mar 04, 2013 23:42
Estatística
-
- [ESTATÍSTICA] R² e Erro padrão da regressão
por Estudante5555 » Qui Dez 13, 2012 10:56
- 0 Respostas
- 3075 Exibições
- Última mensagem por Estudante5555

Qui Dez 13, 2012 10:56
Estatística
-
- ESTATISTICA BÁSICA - DESVIO PADRÃO MÉDIO
por FranPsico » Qua Jun 07, 2017 13:55
- 1 Respostas
- 7910 Exibições
- Última mensagem por fernando7

Dom Mai 13, 2018 20:05
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.