por Taah » Sáb Mar 27, 2010 15:33
Seja f uma função real. Mostre que existem uma função par 'g' e uma função ímpar 'h' tal que f(x)= g(x) + h(x),

x

Domínio de f. Em particular, determine 'g' e 'h' no caso em que f(x)= ln(

+x+1)
Iniciei esse ano meu curso de Ciencias Exatas e o professor de cálculo diferencial pediu que levássemos a resposta dessa questão e expuséssemos ela em sala de aula para toda a turma, resultado: por mais que eu tente quando chega no meio da questão eu me enrolo toda. Gostaria de ser ajudada se possível!
Desde já agradeço!
-
Taah
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Mar 27, 2010 15:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Exatas
- Andamento: cursando
por Elcioschin » Sáb Mar 27, 2010 23:27
Vou tentar iniciar
f(x) = ln(x² + x + 1) ----> x² + x + 1 = e^f(x)
x² + x + 1 = e^[g(x) + h(x)] ----> (x² + 2x + 1) - x = [e^g(x)]*[e^h(x)] -----> (x + 1)² - (Vx)² = [e^g(x)]*[e^h(x)] ----> (x + 1 + Vx)*(x + 1 - Vx) = [e^g(x)]*[e^h(x)]
x + 1 + Vx = e^g(x) -----> g(x) = ln(x + 1 + Vx)
x + 1 - Vx = e^h(x) -----> h(x) =ln*(x + 1 - Vx)
Falta provar que uma das funções é ímpar e a outra par.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Taah » Dom Mar 28, 2010 12:16
Vlw
Elcioschin!
Ajudou mto

-
Taah
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Mar 27, 2010 15:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Exatas
- Andamento: cursando
por Taah » Dom Mar 28, 2010 13:21
A prova de que g(x) é par:
g(x) =

g(-x)=

=

=

= g(x)
g(-x)= g(x)
A prova de que h(x) é ímpar:
h(x)=

h(-x)=

=

=

=

= -h(x)
h(-x)= -h(x)
CORRETO?????
Agora, porque g(x) é uma função definida por:
g(x)=

e h(x) é uma função definida por:
h(x)=

????????????
E não por:
g(-x)= g(x)
e...
h(-x)= -h(x)
??????????????
-
Taah
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Mar 27, 2010 15:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Exatas
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Produto da soma pela diferença - ordem do raciocinio
por Soprano » Qui Mar 03, 2016 09:17
- 3 Respostas
- 2656 Exibições
- Última mensagem por DanielFerreira

Ter Mar 08, 2016 21:47
Polinômios
-
- Função real de variável real!
por kellykcl » Qui Mai 01, 2014 13:41
- 2 Respostas
- 3081 Exibições
- Última mensagem por kellykcl

Qui Mai 01, 2014 16:28
Funções
-
- funcao impar
por irineu junior » Sex Mar 12, 2010 20:49
- 2 Respostas
- 2410 Exibições
- Última mensagem por irineu junior

Dom Mar 14, 2010 20:55
Funções
-
- Função par x ímpar
por Jonatan » Sex Jul 30, 2010 12:39
- 1 Respostas
- 2257 Exibições
- Última mensagem por Molina

Sex Jul 30, 2010 14:31
Funções
-
- Função impar
por rapina » Qua Jan 11, 2012 14:48
- 2 Respostas
- 2051 Exibições
- Última mensagem por Arkanus Darondra

Qui Jan 12, 2012 15:23
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.