
Como determinar algebricamente a imagem desta função, por favor.
Obrigado, galera.


não pode ter imagem ilimitada , salve em alguns casos onde esta função não é contínua . No caso contínumo a imagem de f será precisamente um intervalo fechado .. Um resultado útil é o seguinte : Dada qualquer
(não necessariamente uma bijeção ) fazemos corresponde uma bijeção
dada por
, onde
é imagem de
( a que queremos determinar ) e
é obtido do seguinte modo :
em A, vamos dizer que eles são equivalentes(notação
se
. Esta relação é o que chamamos de relação de equivalence em A . (Ela é reflexiva , simétrica e transitiva ) . Dado
definimos
. Um bom exercício (o qual pode verificar para p qualqer relação de equivalence ) é que duas classes quaisquer
são disjuntas ou são iguais . Então para cada classe
escolhemos um representante digamos
... E assim ,D pode ser obtido como o subconunto de A constituidos destes elemenos x .. Então g será injetiva logo uma bijeção e portanto g admirtira uma inversa
e assim sua imagem pode ser efetivamente determinada que e é preisamente o domínio da inversa ... Este seria uma forma 'algebrica' ..as demais são mais 'analiticas ' ... I 'm sorry .... Estou sem tempo e nao conseguir redigir tudo proprieamenrte .. E o modo 2 é a mesma ideia porem mais informal ..

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.