por matheus_frs1 » Sáb Mai 21, 2016 21:03
Como eu faço para determinar algebricamente a imagem de uma função? O domínio eu sei q tem algumas condições de existência, como não poder ter denominador nulo e raiz de índice par de número negativo. Mas determinar a imagem eu não sei, só através de gráfico, mas através de gráfico não consegui com essa função aqui.

Como determinar algebricamente a imagem desta função, por favor.
Obrigado, galera.
-
matheus_frs1
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Mar 04, 2014 12:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Eletroeletrônica
- Andamento: cursando
por e8group » Seg Mai 23, 2016 10:40
Depende das ferramentas que você dispõem .. Para uma classe de funções , vários conceitos topológicos , como compacidade , conexidade são preservados . Assim , e.g, uma função
![f : [a,b] \subset \mathbb{R} \longrightarrow \mathbb{R} f : [a,b] \subset \mathbb{R} \longrightarrow \mathbb{R}](/latexrender/pictures/c08dcf6d00d1a4ccbd5694147bb6f91a.png)
não pode ter imagem ilimitada , salve em alguns casos onde esta função não é contínua . No caso contínumo a imagem de f será precisamente um intervalo fechado .. Um resultado útil é o seguinte : Dada qualquer

(não necessariamente uma bijeção ) fazemos corresponde uma bijeção

dada por

, onde

é imagem de

( a que queremos determinar ) e

é obtido do seguinte modo :
Modo 1 : Usando relação de equivalencia
Dado dois elementos

em A, vamos dizer que eles são equivalentes(notação

se

. Esta relação é o que chamamos de relação de equivalence em A . (Ela é reflexiva , simétrica e transitiva ) . Dado

definimos
![[x]_{\sim} := \{ y \in A ; f(y) = f(x) \} [x]_{\sim} := \{ y \in A ; f(y) = f(x) \}](/latexrender/pictures/c85a75acb17280d283e1504acf113719.png)
. Um bom exercício (o qual pode verificar para p qualqer relação de equivalence ) é que duas classes quaisquer
![[x]_{\sim} , [y]_{\sim} [x]_{\sim} , [y]_{\sim}](/latexrender/pictures/86f20ad63a46f234038cb6e88d0666c3.png)
são disjuntas ou são iguais . Então para cada classe
![[x]_{\sim} [x]_{\sim}](/latexrender/pictures/522ac822e72e2748162dd36cc7c9c00f.png)
escolhemos um representante digamos

... E assim ,D pode ser obtido como o subconunto de A constituidos destes elemenos x .. Então g será injetiva logo uma bijeção e portanto g admirtira uma inversa

e assim sua imagem pode ser efetivamente determinada que e é preisamente o domínio da inversa ... Este seria uma forma 'algebrica' ..as demais são mais 'analiticas ' ... I 'm sorry .... Estou sem tempo e nao conseguir redigir tudo proprieamenrte .. E o modo 2 é a mesma ideia porem mais informal ..
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por matheus_frs1 » Qui Jun 16, 2016 21:07
Nossa, serei sincero... entendi muito pouco da explicação. Mas pelo que vejo é melhor usar uma análise para determinar a imagem, já que achar o domínio da função inversa é mais trabalhoso.
Obrigado, Santiago.
-
matheus_frs1
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Mar 04, 2014 12:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Eletroeletrônica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Imagem da Função
por edumstpu » Ter Abr 19, 2011 23:23
- 2 Respostas
- 2096 Exibições
- Última mensagem por NMiguel

Qua Abr 20, 2011 21:17
Funções
-
- Dúvida imagem de uma função.
por Danilo » Dom Mai 20, 2012 18:05
- 2 Respostas
- 2752 Exibições
- Última mensagem por diegolimarj84

Ter Jun 05, 2012 23:10
Funções
-
- Função.imagem e dominio
por luciana correa » Seg Jul 02, 2012 21:40
- 1 Respostas
- 2072 Exibições
- Última mensagem por MarceloFantini

Seg Jul 02, 2012 23:50
Funções
-
- [Imagem e dominio da função]
por b_s_a » Ter Mai 13, 2014 15:26
- 0 Respostas
- 1568 Exibições
- Última mensagem por b_s_a

Ter Mai 13, 2014 15:26
Funções
-
- Introdução a Função: Relação Binária, Domínio e Imagem
por jlinncon » Sex Mar 09, 2018 14:40
- 0 Respostas
- 3002 Exibições
- Última mensagem por jlinncon

Sex Mar 09, 2018 14:40
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.