• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto da soma pela diferença - ordem do raciocinio

Produto da soma pela diferença - ordem do raciocinio

Mensagempor Soprano » Qui Mar 03, 2016 09:17

Olá a todos,
O objectivo do exercico é encontrar o conjunto de solução da equações de segundo grau (função quadrática). Posso aplicar o produto da soma pela diferença desta forma?

2x²+2x-12=0
2(x²+x-6)
2(x-2)(x+3)
x-2=0 v x+3=0
x=2 v x=-3

Não estou a conseguir resolver o exercicio sem aplicar assim o produto da soma pela diferença.
Obrigado
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: Produto da soma pela diferença - ordem do raciocinio

Mensagempor DanielFerreira » Sáb Mar 05, 2016 05:02

Olá!
Tua resposta está correcta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Produto da soma pela diferença - ordem do raciocinio

Mensagempor Soprano » Seg Mar 07, 2016 12:57

Obrigado pela resposta,

Sempre pensei que o produto da soma pela diferença apenas podesse ser exposto desta forma (x+a)(x-b). Mas depois fiz os calculos com ambos os modelos, (x+a)(x-b) e (x-a)(x-b), e descobri que era o mesmo!

Mas isto faz sentido?

(x+5)(x-9) = x²-4x-45

(x-5)(x+9) = x²+4x-45

Ou não é possível?
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: Produto da soma pela diferença - ordem do raciocinio

Mensagempor DanielFerreira » Ter Mar 08, 2016 21:47

Soprano, boa noite!

Inicialmente, tomemos como exemplo os números 3 e 4. O produto da soma pela diferença entre eles é dado por: (4 + 3) \cdot (4 - 3) = 7

Supomos agora que os números em questão não sejam conhecidos; sejam a e b tais números, então o produto da soma pela diferença é dado por (a + b) \cdot (a - b).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.