por Cleyson007 » Dom Mai 31, 2015 00:37
Vou te dar uma ajuda no primeiro anexo.
a)

Tente resolver sozinho. Se caso surgir alguma dúvida me comunique.
b) Use a mesma regra que utilizei para resolver a letra "a" deste exercício. Dá uma olhada sobre a Regra do Quociente. No numerador você terá também de usar a Regra do Produto. Surgindo dúvida é só me comunicar.
c) Efetue a multiplicação antes de resolver. Em outras palavras, derive essa função:
f(z) = z + e^z - z*e^z - e^(2z).
Bons estudos
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por johnatta » Dom Mai 31, 2015 16:27
Amigo, você ajudou bastante. Mas ,na verdade, eu quero ter a certeza da resposta. Então, se possível, por favor, resolva por completo ? Grato !
-
johnatta
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Ter Abr 07, 2015 17:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10494 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Ajuda com calculo de derivada
por alienpuke » Sáb Out 24, 2015 15:45
- 2 Respostas
- 4213 Exibições
- Última mensagem por Cleyson007

Sáb Out 24, 2015 16:12
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] derivada
por beel » Dom Set 25, 2011 13:04
- 2 Respostas
- 3922 Exibições
- Última mensagem por beel

Dom Set 25, 2011 16:22
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] derivada de log
por beel » Sáb Out 15, 2011 22:42
- 4 Respostas
- 4672 Exibições
- Última mensagem por beel

Ter Out 18, 2011 13:16
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] derivada de log 2
por beel » Dom Out 16, 2011 01:10
- 2 Respostas
- 4313 Exibições
- Última mensagem por Fabio Cabral

Ter Out 18, 2011 13:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.