por AlexanderCanust » Seg Abr 27, 2015 20:37
![\lim_{x\rightarrow0}\frac{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}}{x} \lim_{x\rightarrow0}\frac{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}}{x}](/latexrender/pictures/0b8f88826b60494555aa0310ddcfbe67.png)
Bom... eu multipliquei a função pelo divisor, e achei x², o que me permitiu "cortar" o x.
![\lim_{x\rightarrow0}\frac{x}{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}} \lim_{x\rightarrow0}\frac{x}{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}}](/latexrender/pictures/e7280533690c9be7e849417293c208d5.png)
Porém, mesmo assim eu não posso substituir x por 0, pois ainda assim meu denominador vai igualar a 0.
Desde já agradeço pela ajuda.

-
AlexanderCanust
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Abr 27, 2015 19:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Econômicas
- Andamento: cursando
por adauto martins » Ter Abr 28, 2015 15:46
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por AlexanderCanust » Ter Abr 28, 2015 19:40
Perfeito. Muito obrigado.

-
AlexanderCanust
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Abr 27, 2015 19:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Econômicas
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- limites: tende ao infinito
por Victor Gabriel » Sáb Abr 27, 2013 00:40
- 0 Respostas
- 923 Exibições
- Última mensagem por Victor Gabriel

Sáb Abr 27, 2013 00:40
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] encontrar condicao para o denominador
por kaylon » Qua Jun 12, 2013 12:00
- 0 Respostas
- 1150 Exibições
- Última mensagem por kaylon

Qua Jun 12, 2013 12:00
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites com raízes e zerando numerador/denominador
por renataoalves » Ter Set 16, 2014 17:14
- 1 Respostas
- 3586 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:14
Cálculo: Limites, Derivadas e Integrais
-
- Provar lim f(x)g(x) =0 quando o x tende a p
por Danilct » Seg Dez 07, 2015 22:00
- 0 Respostas
- 2126 Exibições
- Última mensagem por Danilct

Seg Dez 07, 2015 22:00
Cálculo: Limites, Derivadas e Integrais
-
- Qual o limite de [(2-x)^4-16]/x quando X tende a 0
por Therodrigou » Qua Jun 20, 2018 06:46
- 2 Respostas
- 9147 Exibições
- Última mensagem por Therodrigou

Qua Jun 20, 2018 22:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.