• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação potência

Inequação potência

Mensagempor brumadense » Sex Jan 22, 2010 00:34

Olá

Gostaria de uma ajuda sobre inequação potência. Sei que existem inequação potência com expoente par e ímpar. A de expoente ímpar eu entendir. Pois a inequação potência de expoente ímpar tem sempre o sinal da base, de acordo com esses exemplos:

(x - 4)^7 <= 0 ==> x - 4 <= 0 ==> x <= 4

(3x - 1)^1001 >= 0 ==> 3x - 1>= 0 ==> x >= 1/3

Agora não entendi as inequação de expoente par, gostaria de uma ajuda de como resolvê-las, eis uns exemplos:

(7 - 3x)^4 < 0

(2x - 1)^100 >= 0

Gostaria de saber como resolver as inequações potência de expoente par.
Obrigado.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Inequação potência

Mensagempor Elcioschin » Sex Jan 22, 2010 09:11

Um número real (positivo ou negativo) elevado a um expoente par será sempre POSITIVO.

Logo: (7 - 3x)^4 < 0 é IMPOSSÌVEL.

O outro dá para resolver:

(2x - 1)^100 >= 0 ----> (2x - 1)^100 = 0 -----> 2x - 1 = 0 ----> x = 1/2 ----> Solução geral -----> x >= 1/2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Inequação potência

Mensagempor brumadense » Qui Jan 28, 2010 02:58

Elcioschin escreveu:Um número real (positivo ou negativo) elevado a um expoente par será sempre POSITIVO.

Logo: (7-3x)^4 < 0 é IMPOSSÌVEL.

O outro dá para resolver:

(2x-1)^100 >= 0 ----> (2x-1)^100 = 0 -----> 2x - 1 = 0 ----> x = 1/2 ----> Solução geral -----> x >= 1/2



Olá Elcioschin, obrigado pela resposta.

A primeira questão eu entendi, agora gostaria de saber se poderia me ajudar nessas outras questões:

A segunda questão:

{(2x-1)}^{100} \geq 0 ,No livro em que estudo traz a seguinte resposta: S = R , gostaria de saber porque essa resposta S = R. Se puder me responder, agradeço.

Agora nessas questões:

{(3x-6)}^{6} \geq 0 ----> S = R , também não entendi do porque do S = R

Nessa outra questão:

{(3x-6)}^{6} > 0 ------> S = R – {2} , não entendi porque deu R – {2}

Essa questão:

{(3x-6)}^{6} < 0 ----- S = \phi ou seja, impossível, como você já explicou acima.

Agora essa outra questão:

{(3x-6)}^{6} \leq 0 ------> 3x – 6 \leq 0 ------> x = \frac{-6}{3} ----- > x = -2

No livro traz S = {2}

Agora não entendi do por quê deu 2 e não menos -2 , será que tem a ver com o sinal de = (igualdade) que acompanha o sinal de < (maior).


Desde já agradeço.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Inequação potência

Mensagempor Elcioschin » Qui Jan 28, 2010 09:16

Lembre-se do que eu expliquei antes:

TODA expressão REAL na variável x elevada a expoente PAR nunca será negativa.

Assim ----> (2x - 1)^100 nunca será NEGATIVA.

Logo ----> (2x - 1)^100 = 0 ----> é POSSÍVEL para x = 1/2 ----> (2x - 1)^100 > 0 é POSSÍVEL para qualquer valor de x

Logo a solução para (2x - 1) >= 0 é sempre possível, para QUALQUER valor REAL de x ----> {R}

Vamos agora ver o outro:

(3x - 6)^6 =< 0 ----> temos DUAS opções:

1) (3x - 6)^6 < 0 -----> IMPOSSÍVEL

2) (3x - 6)^6 = 0 -----> 3x - 6 = 0 ----> 3x = 6 ----> x = 6/3 ----> x = 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}