• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Principio da contagem] MACKENSE-adaptada)

[Principio da contagem] MACKENSE-adaptada)

Mensagempor matheus36000 » Seg Fev 09, 2015 15:54

Se uma sala tem cinco portas, o número de maneiras distintas de se entrar nela por uma
porta e sair por outra diferente é:
a) 5 b) 10 c) 15 d) 20 e) 25
matheus36000
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Dez 21, 2014 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Ensino Médio
Andamento: cursando

Re: [Principio da contagem] MACKENSE-adaptada)

Mensagempor Cleyson007 » Seg Fev 09, 2015 20:19

Olá, boa noite!

Para a porta de entrada existem 5 possibilidades.

Como já escolhemos uma porta para entrar, sobram-se 4 possibilidades para a saída.

Pelo Princípio Fundamental da Contagem temos: 5 * 4 = 20 possibilidades.

Bons estudos
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Principio da contagem] MACKENSE-adaptada)

Mensagempor matheus36000 » Ter Fev 10, 2015 18:49

Cleyson007 escreveu:Olá, boa noite!

Para a porta de entrada existem 5 possibilidades.

Como já escolhemos uma porta para entrar, sobram-se 4 possibilidades para a saída.

Pelo Princípio Fundamental da Contagem temos: 5 * 4 = 20 possibilidades.

Bons estudos


Muito obrigado não tinha pensado desta maneira .

Se tiver um tempo visite este tópico please
viewtopic.php?f=149&t=15121
matheus36000
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Dez 21, 2014 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Ensino Médio
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}