• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de raizes de uma função

Calculo de raizes de uma função

Mensagempor EREGON » Sex Nov 14, 2014 14:22

Oi,

Gostaria de solicitar a vossa ajuda para calcular as raízes de uma função, conforme o exercício em anexo. Qual o melhor metodo para este cálculo?

Obrigado
Anexos
Determina Raízes.JPG
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Calculo de raizes de uma função

Mensagempor EREGON » Sex Jan 16, 2015 11:04

Olá,

podem dar-me uma ajuda neste problema?

Obrigado.
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Calculo de raizes de uma função

Mensagempor adauto martins » Seg Jan 19, 2015 09:56

regra de descartes:
Sejam p(z) = a0+ a1z + ... + an zn um polinomio real (diferente do polinomio
zero), T o número de troca de sinais na seqüencia de seus coeficientes ak nao nulos, e r o número
de suas ra?zes reais positivas (cada qual contada com a sua respectiva multiplicidade). Entao, T ?r
é par e nao-negativo.
usando o teroema podemos:
p(x)={x}^{8}+2.{x}^{2}-1
T=1...(++-)uma troca de sinal,entao r=1-2k,como r\succ 0\Rightarrowtem uma raiz real positiva...
faz-se p(-x)=({-x})^{8}+2({-x})^{2}={x}^{8}+2{x}^{2}-1...logo T=1...,pois(++-),uma troca de sinais...
logo r=1-2k,r\succ 0\Rightarrow,p(x) tera uma raiz real negativa...entao pode-se concluir q. p(x) tem uma raiz real positiva,uma raiz real negativa e tres raizes complexas e seus conjugados,pois sua ordem e de 8...junto a soluçao segue um anexo sobre raizes de polinomios
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.