por EREGON » Sex Nov 14, 2014 14:22
Oi,
Gostaria de solicitar a vossa ajuda para calcular as raízes de uma função, conforme o exercício em anexo. Qual o melhor metodo para este cálculo?
Obrigado
- Anexos
-

-
EREGON
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Nov 10, 2014 16:00
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: informatica
- Andamento: cursando
por EREGON » Sex Jan 16, 2015 11:04
Olá,
podem dar-me uma ajuda neste problema?
Obrigado.
-
EREGON
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Nov 10, 2014 16:00
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: informatica
- Andamento: cursando
por adauto martins » Seg Jan 19, 2015 09:56
regra de descartes:
Sejam p(z) = a0+ a1z + ... + an zn um polinomio real (diferente do polinomio
zero), T o número de troca de sinais na seqüencia de seus coeficientes ak nao nulos, e r o número
de suas ra?zes reais positivas (cada qual contada com a sua respectiva multiplicidade). Entao, T ?r
é par e nao-negativo.
usando o teroema podemos:


(++-)uma troca de sinal,entao

,como

tem uma raiz real positiva...
faz-se

...logo

,pois(++-),uma troca de sinais...
logo

,p(x) tera uma raiz real negativa...entao pode-se concluir q. p(x) tem uma raiz real positiva,uma raiz real negativa e tres raizes complexas e seus conjugados,pois sua ordem e de 8...junto a soluçao segue um anexo sobre raizes de polinomios
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo das raízes
por nanasouza123 » Sex Set 22, 2017 21:06
- 0 Respostas
- 1110 Exibições
- Última mensagem por nanasouza123

Sex Set 22, 2017 21:06
Equações
-
- cálculo de raízes
por ezidia51 » Dom Mar 25, 2018 16:22
- 2 Respostas
- 2327 Exibições
- Última mensagem por ezidia51

Dom Mar 25, 2018 19:31
Aritmética
-
- Cálculo das raízes de um polinômio
por eu_dick1 » Ter Nov 11, 2014 23:42
- 0 Respostas
- 1534 Exibições
- Última mensagem por eu_dick1

Ter Nov 11, 2014 23:42
Polinômios
-
- [Calculo I] Limites envolvendo raízes.
por Jefferson_mcz » Seg Mar 18, 2013 14:00
- 1 Respostas
- 1596 Exibições
- Última mensagem por young_jedi

Seg Mar 18, 2013 20:35
Cálculo: Limites, Derivadas e Integrais
-
- CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES
por thiago15_2 » Qui Fev 27, 2014 01:20
- 1 Respostas
- 2327 Exibições
- Última mensagem por young_jedi

Sex Fev 28, 2014 15:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 12:41
pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.
78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?
Assunto:
dúvida em uma questão em regra de 3!
Autor:
Douglasm - Qui Jul 01, 2010 13:16
Observe o raciocínio:
10 pessoas - 9 dias - 135 toneladas
1 pessoa - 9 dias - 13,5 toneladas
1 pessoa - 1 dia - 1,5 toneladas
40 pessoas - 1 dia - 60 toneladas
40 pessoas - 30 dias - 1800 toneladas
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:18
pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:21
leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
valeu meu camarada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.