• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com questão de Logaritmos

Ajuda com questão de Logaritmos

Mensagempor matheus soder » Dom Nov 30, 2014 20:58

Preciso descobrir :
a) A + B
b) A : B

Se puderem necessito para amanhã de manhã
Anexos
qeusta 9.jpg
qeusta 9.jpg (6.71 KiB) Exibido 1817 vezes
matheus soder
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 30, 2014 17:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda com questão de Logaritmos

Mensagempor nakagumahissao » Seg Dez 01, 2014 01:32

Como estão escritos nas regras do fórum, o que já tentou fazer para resolver o problema e em que ponto parou? Poderia postar o que já tentou fazer por favor?
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Ajuda com questão de Logaritmos

Mensagempor matheus soder » Seg Dez 01, 2014 08:49

Eu tentei inverter um dos logaritimos para poder cortar, mas não sei se está correto, assim como o outro, para depois somar seus resultados
matheus soder
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 30, 2014 17:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda com questão de Logaritmos

Mensagempor nakagumahissao » Ter Dez 02, 2014 20:01

Matheus,


Vamos começar resolvendo da seguinte maneira: da forma como estão A e B, ficaria difícil de resolver o problema, assim, vamos usar algumas propriedades para resolver o problema. Primeiramente vamos tratar do A.

A = \log_{\frac{1}{5}}^{16} \log_{16}^{\frac{1}{5}}

Podemos reescrever A usando a troca de base as propriedades da potenciação, ou seja, ficaria da seguinte forma:

A = \log_{\frac{1}{5}}^{16} \log_{16}^{\frac{1}{5}} = \log_{5^{-1}}^{2^{4}} \log_{2^{4}}^{5^{-1}}\Rightarrow

\Rightarrow A = 4\log_{5^{-1}}^{2} \left(- \log_{2^{4}}^{5} \right)\Rightarrow

Agora, mudaremos os logaritmos acima de forma que as bases sejam iguais para os dois. Assim, teremos:

\Rightarrow A = -4 \frac{\log_{2}^{2}}{\log_{2}^{5^{-1}}}\frac{\log_{2}^{5}}{\log_{2}^{2^{4}}} = -4\frac{1}{-\log_{2}{5}}\frac{\log_{2}^{5}}{4\log_{2}^{2}} = 4\frac{1}{\log_{2}{5}}\frac{\log_{2}^{5}}{4}\Rightarrow

\Rightarrow A = 1

Agora vamos simplificar B:

B = \frac{1}{\log_{25}^{5}}

Vamos alterar a base do logaritmo para 5 para facilitar os cálculos:

B = \frac{1}{\log_{25}^{5}} = \frac{1}{\frac{\log_{5}^{5}}{\log_{5}^{25}}} =  \frac{1}{\frac{\log_{5}^{5}}{\log_{5}^{5^{2}}}} = \frac{1}{\frac{1}{2\log_{5}^{5}}}  = 2\log_{5}^{5} = 2

Como A = B = 1, agora podemos resolver o problema inicial:

a) A + B = 1 + 2 = 3
b) A : B = 1/2

Que são as respostas procuradas.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.