• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com questão de Logaritmos

Ajuda com questão de Logaritmos

Mensagempor matheus soder » Dom Nov 30, 2014 20:58

Preciso descobrir :
a) A + B
b) A : B

Se puderem necessito para amanhã de manhã
Anexos
qeusta 9.jpg
qeusta 9.jpg (6.71 KiB) Exibido 1673 vezes
matheus soder
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 30, 2014 17:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda com questão de Logaritmos

Mensagempor nakagumahissao » Seg Dez 01, 2014 01:32

Como estão escritos nas regras do fórum, o que já tentou fazer para resolver o problema e em que ponto parou? Poderia postar o que já tentou fazer por favor?
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Ajuda com questão de Logaritmos

Mensagempor matheus soder » Seg Dez 01, 2014 08:49

Eu tentei inverter um dos logaritimos para poder cortar, mas não sei se está correto, assim como o outro, para depois somar seus resultados
matheus soder
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 30, 2014 17:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda com questão de Logaritmos

Mensagempor nakagumahissao » Ter Dez 02, 2014 20:01

Matheus,


Vamos começar resolvendo da seguinte maneira: da forma como estão A e B, ficaria difícil de resolver o problema, assim, vamos usar algumas propriedades para resolver o problema. Primeiramente vamos tratar do A.

A = \log_{\frac{1}{5}}^{16} \log_{16}^{\frac{1}{5}}

Podemos reescrever A usando a troca de base as propriedades da potenciação, ou seja, ficaria da seguinte forma:

A = \log_{\frac{1}{5}}^{16} \log_{16}^{\frac{1}{5}} = \log_{5^{-1}}^{2^{4}} \log_{2^{4}}^{5^{-1}}\Rightarrow

\Rightarrow A = 4\log_{5^{-1}}^{2} \left(- \log_{2^{4}}^{5} \right)\Rightarrow

Agora, mudaremos os logaritmos acima de forma que as bases sejam iguais para os dois. Assim, teremos:

\Rightarrow A = -4 \frac{\log_{2}^{2}}{\log_{2}^{5^{-1}}}\frac{\log_{2}^{5}}{\log_{2}^{2^{4}}} = -4\frac{1}{-\log_{2}{5}}\frac{\log_{2}^{5}}{4\log_{2}^{2}} = 4\frac{1}{\log_{2}{5}}\frac{\log_{2}^{5}}{4}\Rightarrow

\Rightarrow A = 1

Agora vamos simplificar B:

B = \frac{1}{\log_{25}^{5}}

Vamos alterar a base do logaritmo para 5 para facilitar os cálculos:

B = \frac{1}{\log_{25}^{5}} = \frac{1}{\frac{\log_{5}^{5}}{\log_{5}^{25}}} =  \frac{1}{\frac{\log_{5}^{5}}{\log_{5}^{5^{2}}}} = \frac{1}{\frac{1}{2\log_{5}^{5}}}  = 2\log_{5}^{5} = 2

Como A = B = 1, agora podemos resolver o problema inicial:

a) A + B = 1 + 2 = 3
b) A : B = 1/2

Que são as respostas procuradas.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D