• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo I] Exercício - Máximos e Mínimos

[Cálculo I] Exercício - Máximos e Mínimos

Mensagempor Pessoa Estranha » Dom Nov 16, 2014 11:43

Olá, pessoal!

Preciso de ajuda no seguinte exercício:

"Uma pedra é lançada verticalmente para cima. Sua altura h (metros) em relação ao solo, é dada por h = {t}^{3} - 3{t}^{2} - 9t + 1, onde t indica o número de segundos decorridos após o lançamento. Em que instante a pedra atingirá sua altura máxima?"

Bom, como queremos encontrar o instante no qual a pedra atinge altura máxima, queremos, então, encontrar o ponto de máximo global. Daí, derivei a função f(t) = h. Fazendo um estudo do sinal, vem que t = -1 é o instante procurado. Contudo, isto não faz sentido. O instante é negativo. Daí, observando o gráfico da f, [url]http://www.wolframalpha.com/input/?i=f%28t%29+%3D+%28%28t%29^%283%29%29+-+%28%283%29%28%28t%29^%282%29%29%29+-+9t+%2B1[/url], vem que a função explode. O instante t = -1 realmente é ponto de máximo, mas, local. Agora, eu não entendi. O que estou fazendo de errado?

Por favor, preciso de ajuda!!
Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo I] Exercício - Máximos e Mínimos

Mensagempor nakagumahissao » Seg Nov 17, 2014 10:41

Pessoa Estranha,


Esta questão é bem simples. Derivando

h = t^3 - 3t^2 - 9t + 1

teremos a equação da velocidade do objeto. Assim, teremos:

\frac{dh}{dt} = v = 3t^2 - 6t - 9

Este objeto terá atingido sua altura máxima quando a velocidade do objeto for zero, pois o objeto irá subir até perder toda a sua velocidade (atingindo o ponto máximo possível) e então começará a descer. Assim, tomando v = 0, teremos:

v = 3t^2 - 6t - 9 = 0

\Delta = b^2 - 4ac = 36 - 4(3)(-9) = 144

Resolvendo a função quadrática, teremos:

t =\frac{ -b \pm \sqrt[]{\Delta}}{2a} = \frac{-(-6) \pm \sqrt[]{144}}{2(3)} = \frac{6\pm 12}{6}

Finalmente,

{t}_{1} = \frac{6 + 12}{6} = 3

e

{t}_{2} = \frac{6 - 12}{6} = -1

Considerando que valores negativos não nos interessa como resposta, concluimos que o tempo para que o objeto atinja sua altura máxima, será de 3 segundos, que é a resposta procurada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Cálculo I] Exercício - Máximos e Mínimos

Mensagempor Pessoa Estranha » Seg Nov 17, 2014 18:45

Olá! Muito obrigada pela resposta!

Ainda tenho uma dúvida. Cheguei exatamente neste resultado, ou melhor, nos valores -1 e 3, mas eu também fiz um estudo do sinal, que indica 3 como ponto de mínimo local e -1, ponto de máximo local. Por isso, achei que 3 não poderia ser o ponto procurado. Por favor, eu não entendo. Pode explicar?

Muito obrigada mesmo! :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo I] Exercício - Máximos e Mínimos

Mensagempor felipederaldino » Qui Nov 27, 2014 11:28

realmente se derivarmos e igualarmos a zero, acharemos esses dois valores (-1 ,3 ). depois fazendo a segunda derivada para ver qual o ponto de maximo e o ponto de minimo da função vemos que a resposta que acharia o ponto de maximo é (-1)...mas como a função é em relacão ao tempo, nao teria como ser um tempo (negativo)..realmente nao faz sentido
felipederaldino
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Nov 05, 2014 17:47
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?