por Pessoa Estranha » Dom Nov 16, 2014 11:43
Olá, pessoal!
Preciso de ajuda no seguinte exercício:
"Uma pedra é lançada verticalmente para cima. Sua altura h (metros) em relação ao solo, é dada por

, onde t indica o número de segundos decorridos após o lançamento. Em que instante a pedra atingirá sua altura máxima?"
Bom, como queremos encontrar o instante no qual a pedra atinge altura máxima, queremos, então, encontrar o ponto de máximo global. Daí, derivei a função f(t) = h. Fazendo um estudo do sinal, vem que t = -1 é o instante procurado. Contudo, isto não faz sentido. O instante é negativo. Daí, observando o gráfico da f, [url]http://www.wolframalpha.com/input/?i=f%28t%29+%3D+%28%28t%29^%283%29%29+-+%28%283%29%28%28t%29^%282%29%29%29+-+9t+%2B1[/url], vem que a função explode. O instante t = -1 realmente é ponto de máximo, mas, local. Agora, eu não entendi. O que estou fazendo de errado?
Por favor, preciso de ajuda!!
Muito Obrigada!
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por nakagumahissao » Seg Nov 17, 2014 10:41
Pessoa Estranha,
Esta questão é bem simples. Derivando

teremos a equação da velocidade do objeto. Assim, teremos:

Este objeto terá atingido sua altura máxima quando a velocidade do objeto for zero, pois o objeto irá subir até perder toda a sua velocidade (atingindo o ponto máximo possível) e então começará a descer. Assim, tomando v = 0, teremos:


Resolvendo a função quadrática, teremos:
![t =\frac{ -b \pm \sqrt[]{\Delta}}{2a} = \frac{-(-6) \pm \sqrt[]{144}}{2(3)} = \frac{6\pm 12}{6} t =\frac{ -b \pm \sqrt[]{\Delta}}{2a} = \frac{-(-6) \pm \sqrt[]{144}}{2(3)} = \frac{6\pm 12}{6}](/latexrender/pictures/be8e1da667a8cff161af6e772c462d92.png)
Finalmente,

e

Considerando que valores negativos não nos interessa como resposta, concluimos que o tempo para que o objeto atinja sua altura máxima, será de 3 segundos, que é a resposta procurada.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por Pessoa Estranha » Seg Nov 17, 2014 18:45
Olá! Muito obrigada pela resposta!
Ainda tenho uma dúvida. Cheguei exatamente neste resultado, ou melhor, nos valores -1 e 3, mas eu também fiz um estudo do sinal, que indica 3 como ponto de mínimo local e -1, ponto de máximo local. Por isso, achei que 3 não poderia ser o ponto procurado. Por favor, eu não entendo. Pode explicar?
Muito obrigada mesmo!

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por felipederaldino » Qui Nov 27, 2014 11:28
realmente se derivarmos e igualarmos a zero, acharemos esses dois valores (-1 ,3 ). depois fazendo a segunda derivada para ver qual o ponto de maximo e o ponto de minimo da função vemos que a resposta que acharia o ponto de maximo é (-1)...mas como a função é em relacão ao tempo, nao teria como ser um tempo (negativo)..realmente nao faz sentido
-
felipederaldino
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Nov 05, 2014 17:47
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo I] Exercício - Máximos e Mínimos
por Pessoa Estranha » Dom Nov 16, 2014 16:53
- 0 Respostas
- 1866 Exibições
- Última mensagem por Pessoa Estranha

Dom Nov 16, 2014 16:53
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo (Maximos e Minimos)]
por moraes1321 » Sáb Dez 01, 2012 10:49
- 2 Respostas
- 3198 Exibições
- Última mensagem por moraes1321

Ter Dez 04, 2012 22:10
Cálculo: Limites, Derivadas e Integrais
-
- Calculo Maximos e Minimos
por brunnoguilherme » Dom Jan 13, 2013 19:58
- 0 Respostas
- 1490 Exibições
- Última mensagem por brunnoguilherme

Dom Jan 13, 2013 19:58
Cálculo: Limites, Derivadas e Integrais
-
- Calculo III - Máximos e Minimos
por lukeibol » Seg Mai 08, 2017 14:47
- 0 Respostas
- 1246 Exibições
- Última mensagem por lukeibol

Seg Mai 08, 2017 14:47
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo 1] Máximos e mínimos de uma função
por LuisLemos » Qua Jul 27, 2016 21:27
- 4 Respostas
- 6867 Exibições
- Última mensagem por LuisLemos

Qui Jul 28, 2016 00:49
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.