• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Estruturas Algébricas] Homomorfismo

[Estruturas Algébricas] Homomorfismo

Mensagempor Pessoa Estranha » Sáb Nov 22, 2014 14:47

Olá!

Preciso de ajuda para a seguinte questão: "Verifique se existem homomorfismos não nulo de (a) {Z}_{4} em {Z}_{7}."

Por favor, preciso muito de ajuda. Não sei nem por onde começar!

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor adauto martins » Dom Nov 23, 2014 12:35

dados {Z}_{m}e{Z}_{n}tais q. o mdc(m,n)=1,ou seja primos entre si ,o unico homomorfismo ente esses grupos e o homomorfismo identicamente nulo...logo nao ha homomorfismo identicamente nao nulos entre {Z}_{m}e{Z}_{n}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor Pessoa Estranha » Dom Nov 23, 2014 13:07

Agradeço muito a sua ajuda!

Só uma pergunta: isso vem por um resultado (teorema, proposição) ?

Qual o livro que você utiliza ou utilizou para estudar esses assuntos?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor adauto martins » Dom Nov 23, 2014 13:17

isso vem como consequencia direta de subgrupos e grupos geradores...o livro base:introduçao a algebra-adilson gonçalves-edicoes do impa...e muita coisa na net mesmo
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor Pessoa Estranha » Dom Nov 23, 2014 14:26

Bom, então quer dizer que de Z4 em Z8 e de Z8 em Z4, como 4 e 8 não são primos entre si, há homomorfismos não nulos?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor adauto martins » Dom Nov 23, 2014 19:53

seja f:{Z}_{m\rightarrow}{Z}_{n}tal q. f e um homomorfismo injetivo,e nucl(f)={e},onde nuc(f) e o nucleo da aplicaçao,entao diz-se q. f e um homomorfismo identicamente nulo de {Z}_{m}em {Z}_{n}...entao pela colocaçao acima resolva e tire suas duvidas, e resolva o exercicio:
se mdc(m,n)=1,entao f:{Z}_{m}\rightarrow {Z}_{n}e um homomorfismo identicamente nulo,caso contrario homomorfismo identicamente nao nulo...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.