• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Stewart - 2ª Fórmula

Teorema de Stewart - 2ª Fórmula

Mensagempor matheus_frs1 » Dom Nov 02, 2014 19:54

Galera, o teorema de Stewart é expresso pela famosa fórmula {b}^{2}m + {c}^{2}n = a({d}^{2} + mn), sendo d a ceviana. Porém nas aulas do nerckie eu vi a seguinte relação equivalente: \frac{{b}^{2}}{na}+\frac{{c}^{2}}{ma}-\frac{{d}^{2}}{mn}=1

O problema é que eu não consegui passar da primeira pra segunda fórmula, queria saber essa conversão algebricamente, alguém me ajuda?

Obrigado
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Teorema de Stewart - 2ª Fórmula

Mensagempor Russman » Dom Nov 02, 2014 21:40

É simples.

Da expressão

b^2 m + c^2 n = a(d^2 + mn)

efetua a multiplicação em a, passe o termo ad^2 para o 1° membro e divida toda a expressão por amn.

b^2 m + c^2 n = ad^2 + amn
b^2 m + c^2 n - ad^2  = amn
\frac{b^2m + c^2n - ad^2}{amn} = \frac{amn}{amn}
\frac{b^2}{an} + \frac{c^2}{am} - \frac{d^2}{mn} = 1

Voilà.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Teorema de Stewart - 2ª Fórmula

Mensagempor matheus_frs1 » Dom Nov 02, 2014 23:52

kkkkkkkkkkkkk credo, fiquei até envergonhado de tão fácil que é agora q vi a resolução. Acho q não me atentei pro denominador comum no primeiro membro, posso quebrar aquela soma no numerador em várias somas de frações com o mesmo denominador e cortar oq tem q ser cortado. Vlw mais uma vez, Russman, salvando mais vidas que o Goku.
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Teorema de Stewart - 2ª Fórmula

Mensagempor Russman » Seg Nov 03, 2014 00:10

Hahahah. É, apenas uma questao de "cair a ficha".
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: