• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Stewart - 2ª Fórmula

Teorema de Stewart - 2ª Fórmula

Mensagempor matheus_frs1 » Dom Nov 02, 2014 19:54

Galera, o teorema de Stewart é expresso pela famosa fórmula {b}^{2}m + {c}^{2}n = a({d}^{2} + mn), sendo d a ceviana. Porém nas aulas do nerckie eu vi a seguinte relação equivalente: \frac{{b}^{2}}{na}+\frac{{c}^{2}}{ma}-\frac{{d}^{2}}{mn}=1

O problema é que eu não consegui passar da primeira pra segunda fórmula, queria saber essa conversão algebricamente, alguém me ajuda?

Obrigado
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Teorema de Stewart - 2ª Fórmula

Mensagempor Russman » Dom Nov 02, 2014 21:40

É simples.

Da expressão

b^2 m + c^2 n = a(d^2 + mn)

efetua a multiplicação em a, passe o termo ad^2 para o 1° membro e divida toda a expressão por amn.

b^2 m + c^2 n = ad^2 + amn
b^2 m + c^2 n - ad^2  = amn
\frac{b^2m + c^2n - ad^2}{amn} = \frac{amn}{amn}
\frac{b^2}{an} + \frac{c^2}{am} - \frac{d^2}{mn} = 1

Voilà.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Teorema de Stewart - 2ª Fórmula

Mensagempor matheus_frs1 » Dom Nov 02, 2014 23:52

kkkkkkkkkkkkk credo, fiquei até envergonhado de tão fácil que é agora q vi a resolução. Acho q não me atentei pro denominador comum no primeiro membro, posso quebrar aquela soma no numerador em várias somas de frações com o mesmo denominador e cortar oq tem q ser cortado. Vlw mais uma vez, Russman, salvando mais vidas que o Goku.
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Teorema de Stewart - 2ª Fórmula

Mensagempor Russman » Seg Nov 03, 2014 00:10

Hahahah. É, apenas uma questao de "cair a ficha".
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)