por Antonio Unwisser » Dom Set 28, 2014 16:39
Boa tarde, pessoal.
Simplesmente não consigo resolver exercícios que propõem que se ache o resultado de uma determinada operação a partir do resultado de outra.
Por exemplo:
Sabendo que
cossec x/sec x + sec x/cossec x = 5, o valor de

é:
Ou então:
Se tg x + cotg x = 3, calcule sen 2x.
Estou com todas as identidades (cossec x = 1/sen x; etc.) em mente, bem como as fórmulas derivadas da Relação Fundamental, e também mantendo em mente que
sen 2x = 2senx.cosx, e cos 2x =

-

, e as outras que se derivam a partir daí, bem como as da tangente.
Mas obviamente há alguma relação que não consigo enxergar. Qualquer ajuda será muito bem-vinda.
Obrigado pela atenção.
-
Antonio Unwisser
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 30, 2014 20:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Filosofia
- Andamento: cursando
por e8group » Dom Out 05, 2014 21:42
Não há uma regra geral p/ resolver estes tipos de equações , e destes casos expostos o objetivo não é resolver a eq. primeiro p/ x e depois computar sin 2x , etc ...A ideia é reescrever estas equações em termos de sin 2x ou de sin x + cos x .. Veremos como isto é possível ...
Vou propor uma equação , escolha algum número real k (a princípio sem restrições ) , fixado a escolha seja a eq.

. Se você fizer k = 5 e depois igual 3 você terá exatamente as duas equações que expôs (certifique-se que o primeiro membro da 1ª eq. é o mesmo que o escrever tan x + cot x .) .
Agora note que

.
Daí ,

. Ou ainda ,

.Mas
sabemos da relação trigonométrica que

e também que

. Assim ,

o que implica

. Segue daí que podemos escolher qualquer k maior ou igual a 2 em módulo (pois seno é limitado por 1) .
Em particular , com k = 5 , tem a resposta desejada . Agora p/ computar

note que

-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Antonio Unwisser » Seg Out 06, 2014 19:43
Muitíssimo obrigado, santhiago.

Antônio.
-
Antonio Unwisser
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 30, 2014 20:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Filosofia
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Simplifique a expressão com radicais duplos
por Balanar » Seg Ago 09, 2010 04:01
- 2 Respostas
- 24493 Exibições
- Última mensagem por Soprano

Sex Mar 04, 2016 09:49
Desafios Difíceis
-
- Simplifique a expressão com radicais duplos abaixo:
por Bryan Sales » Dom Jul 20, 2014 19:11
- 1 Respostas
- 3081 Exibições
- Última mensagem por Soprano

Sex Mar 04, 2016 09:51
Aritmética
-
- Dúvida,relação binária
por ibatexano » Sex Set 18, 2009 16:15
- 2 Respostas
- 5825 Exibições
- Última mensagem por ibatexano

Sex Set 18, 2009 23:14
Álgebra
-
- Duvida com relação a integral
por MarceloRocks » Seg Dez 03, 2012 11:31
- 1 Respostas
- 3003 Exibições
- Última mensagem por young_jedi

Seg Dez 03, 2012 15:54
Funções
-
- [Simplificação] Dúvida em relação ao resultado
por stilobreak » Sáb Mar 23, 2013 02:43
- 1 Respostas
- 2990 Exibições
- Última mensagem por DanielFerreira

Sex Mar 29, 2013 02:20
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.