por Nicolas1Lane » Sáb Ago 30, 2014 20:36
Boa noite amigos, faz um tempo desde que fiz cálculo I e estava procurando recordar-me de como fazer integração por substituição u.du para a seguinte uma f(x)= (6-3x)/x definida no intervalo [a,b] delimitado em x pelos intervalos de integração de 1 até 2.
![f(x)=\int\limits_{1}^2~[(6-3x)/x] dx f(x)=\int\limits_{1}^2~[(6-3x)/x] dx](/latexrender/pictures/e7be5d9ba5fca038aac3a38e5ba3eb0b.png)
Essa é parte de um cálculo de área definido por 3 funções. Estou com uma dúvida muito básica, depois de colocar em evidência o 3, como devo proceder para integrar esta função?
Pois me recordo de a integral de 1/x ser igual a ln|x| e a integral de 6-3x ser 6x - 3x²/2, mas não tenho certeza se é correto fazer a integração delas sem uma substituição.
Poderiam me dizer como devo proceder para resolver este cálculo? Obrigado.
Editado pela última vez por
Nicolas1Lane em Sáb Ago 30, 2014 22:58, em um total de 1 vez.
-
Nicolas1Lane
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Set 11, 2013 23:25
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Exatas/Ciência da Computação
- Andamento: cursando
por DanielFerreira » Sáb Ago 30, 2014 22:48
Olá
Nicolas,
boa noite!
![\\ f(x) = \int_{1}^{2} \left [ \frac{(6 - 3x)}{3} \right ] dx = \\\\\\ f(x) = \int_{1}^{2} \frac{3(2 - x)}{3} dx = \\\\\\ f(x) = \int_{1}^{2} (2 - x) dx = \\ f(x) = \int_{1}^{2} \left [ \frac{(6 - 3x)}{3} \right ] dx = \\\\\\ f(x) = \int_{1}^{2} \frac{3(2 - x)}{3} dx = \\\\\\ f(x) = \int_{1}^{2} (2 - x) dx =](/latexrender/pictures/93a996dcb59d7eb38e132534bd08d81b.png)
Para integrá-la, não precisará aplicar uma substituição simples; podes integrar a partir das tabelas...
Caso não consiga prosseguir, informe a dúvida ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Nicolas1Lane » Sáb Ago 30, 2014 23:36
Nossa! Me desculpe, quando estava digitando nem havia percebido...houve um pequeno erro de digitação na função a ser integrada ao escrevê-la em LATEX.
a função f quando sobre um 3 sei que pode ser simplificada com meios bem básicos de integração.
Mas quando se tem um (...)/x tem a necessidade de uma substituição correto?
Obs: Já arrumei a função. da minha dúvida.
E estive usando como referência o Geogebra para tentar chegar a solução, mas algo ainda devo estar fazendo errado, pois: a solução dada por ele é

Sendo que no máximo pelo que tentei até 3horas atrás fora:

Sei que meu cálculo está errado e pensei que talvez seja por conta do valor da substituição não ter sido a melhor escolha, mas se fosse 1/x sei que teria sido pior.
portanto usei a partir de

u = x - 2


![f(x)=-3[uln(|x|)]\int\limits_{1}^2 f(x)=-3[uln(|x|)]\int\limits_{1}^2](/latexrender/pictures/c4f38fb87d6d8071e42e0f6a46fb7ad3.png)
![f(x)=-3(x - 2)ln(|x|)]\int\limits_{1}^2 f(x)=-3(x - 2)ln(|x|)]\int\limits_{1}^2](/latexrender/pictures/6f92babf4a802b3ae51f036aa583e04a.png)
mas, -3ln|x|u = -3(x - 2)ln|x| =-3x + 6ln|x|
Assim:




Está tudo ok?
Acho que saquei o que eu estava errando. A volta da substituição de u para x, estava a fazer toda vez a volta para x com as parênteses e acaba por pensar que tinha distributiva aonde nada havia.
-
Nicolas1Lane
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Set 11, 2013 23:25
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Exatas/Ciência da Computação
- Andamento: cursando
por DanielFerreira » Dom Set 07, 2014 21:35
Olá
Nícolas,
desculpe-me pela demora!
Fizeste

. Deverias ter substituído

por

, pois

.
Não podes "trabalhar" com as duas variáveis, já que aplicou substituição simples. O "x" deveria ter dado lugar ao "u"!
![\\ f(x) = \int_{1}^{2} \frac{6 - 3x}{x} dx \\\\\\ f(x) = \int_{1}^{2} \frac{6}{x} - \frac{3x}{x} dx \\\\\\ f(x) = \int_{1}^{2} \frac{6}{x} dx - \int_{1}^{2} \frac{3\cancel{x}}{\cancel{x}} dx \\\\\\ f(x) = 6 \cdot \int_{1}^{2} \frac{1}{x} dx - 3 \cdot \int_{1}^{2} dx \\\\\\ f(x) = 6 \cdot \left[ \ln x \right]_{1}^{2} - 3 \cdot \left[ x \right]_{1}^{2} \\\\ (...) \\ f(x) = \int_{1}^{2} \frac{6 - 3x}{x} dx \\\\\\ f(x) = \int_{1}^{2} \frac{6}{x} - \frac{3x}{x} dx \\\\\\ f(x) = \int_{1}^{2} \frac{6}{x} dx - \int_{1}^{2} \frac{3\cancel{x}}{\cancel{x}} dx \\\\\\ f(x) = 6 \cdot \int_{1}^{2} \frac{1}{x} dx - 3 \cdot \int_{1}^{2} dx \\\\\\ f(x) = 6 \cdot \left[ \ln x \right]_{1}^{2} - 3 \cdot \left[ x \right]_{1}^{2} \\\\ (...)](/latexrender/pictures/1fe860bee519d8a675d1f53c3a7c6212.png)
Agora é contigo, se não conseguires, retorne!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [INTEGRAL DEFINIDA] Integração por partes?
por fabriel » Seg Mai 06, 2013 01:26
- 5 Respostas
- 3135 Exibições
- Última mensagem por e8group

Ter Mai 07, 2013 21:12
Cálculo: Limites, Derivadas e Integrais
-
- Duvida Integral Definida
por douglasnickson » Dom Jul 03, 2016 01:39
- 5 Respostas
- 14206 Exibições
- Última mensagem por adauto martins

Ter Jul 05, 2016 15:25
Cálculo: Limites, Derivadas e Integrais
-
- [integral definida] - dúvida em exercício
por natanaelskt » Qua Jul 02, 2014 02:13
- 1 Respostas
- 1793 Exibições
- Última mensagem por e8group

Qua Jul 02, 2014 14:04
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL INDEFINIDA] Duvida de integração
por fabriel » Qua Out 03, 2012 16:20
- 3 Respostas
- 1906 Exibições
- Última mensagem por fabriel

Qua Out 03, 2012 17:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Duvida na integração Por partes
por fabriel » Sáb Out 06, 2012 18:56
- 1 Respostas
- 1485 Exibições
- Última mensagem por MarceloFantini

Sáb Out 06, 2012 19:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.