por Nicolas1Lane » Sáb Ago 30, 2014 20:36
Boa noite amigos, faz um tempo desde que fiz cálculo I e estava procurando recordar-me de como fazer integração por substituição u.du para a seguinte uma f(x)= (6-3x)/x definida no intervalo [a,b] delimitado em x pelos intervalos de integração de 1 até 2.
![f(x)=\int\limits_{1}^2~[(6-3x)/x] dx f(x)=\int\limits_{1}^2~[(6-3x)/x] dx](/latexrender/pictures/e7be5d9ba5fca038aac3a38e5ba3eb0b.png)
Essa é parte de um cálculo de área definido por 3 funções. Estou com uma dúvida muito básica, depois de colocar em evidência o 3, como devo proceder para integrar esta função?
Pois me recordo de a integral de 1/x ser igual a ln|x| e a integral de 6-3x ser 6x - 3x²/2, mas não tenho certeza se é correto fazer a integração delas sem uma substituição.
Poderiam me dizer como devo proceder para resolver este cálculo? Obrigado.
Editado pela última vez por
Nicolas1Lane em Sáb Ago 30, 2014 22:58, em um total de 1 vez.
-
Nicolas1Lane
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Set 11, 2013 23:25
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Exatas/Ciência da Computação
- Andamento: cursando
por DanielFerreira » Sáb Ago 30, 2014 22:48
Olá
Nicolas,
boa noite!
![\\ f(x) = \int_{1}^{2} \left [ \frac{(6 - 3x)}{3} \right ] dx = \\\\\\ f(x) = \int_{1}^{2} \frac{3(2 - x)}{3} dx = \\\\\\ f(x) = \int_{1}^{2} (2 - x) dx = \\ f(x) = \int_{1}^{2} \left [ \frac{(6 - 3x)}{3} \right ] dx = \\\\\\ f(x) = \int_{1}^{2} \frac{3(2 - x)}{3} dx = \\\\\\ f(x) = \int_{1}^{2} (2 - x) dx =](/latexrender/pictures/93a996dcb59d7eb38e132534bd08d81b.png)
Para integrá-la, não precisará aplicar uma substituição simples; podes integrar a partir das tabelas...
Caso não consiga prosseguir, informe a dúvida ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Nicolas1Lane » Sáb Ago 30, 2014 23:36
Nossa! Me desculpe, quando estava digitando nem havia percebido...houve um pequeno erro de digitação na função a ser integrada ao escrevê-la em LATEX.
a função f quando sobre um 3 sei que pode ser simplificada com meios bem básicos de integração.
Mas quando se tem um (...)/x tem a necessidade de uma substituição correto?
Obs: Já arrumei a função. da minha dúvida.
E estive usando como referência o Geogebra para tentar chegar a solução, mas algo ainda devo estar fazendo errado, pois: a solução dada por ele é

Sendo que no máximo pelo que tentei até 3horas atrás fora:

Sei que meu cálculo está errado e pensei que talvez seja por conta do valor da substituição não ter sido a melhor escolha, mas se fosse 1/x sei que teria sido pior.
portanto usei a partir de

u = x - 2


![f(x)=-3[uln(|x|)]\int\limits_{1}^2 f(x)=-3[uln(|x|)]\int\limits_{1}^2](/latexrender/pictures/c4f38fb87d6d8071e42e0f6a46fb7ad3.png)
![f(x)=-3(x - 2)ln(|x|)]\int\limits_{1}^2 f(x)=-3(x - 2)ln(|x|)]\int\limits_{1}^2](/latexrender/pictures/6f92babf4a802b3ae51f036aa583e04a.png)
mas, -3ln|x|u = -3(x - 2)ln|x| =-3x + 6ln|x|
Assim:




Está tudo ok?
Acho que saquei o que eu estava errando. A volta da substituição de u para x, estava a fazer toda vez a volta para x com as parênteses e acaba por pensar que tinha distributiva aonde nada havia.
-
Nicolas1Lane
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Set 11, 2013 23:25
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Exatas/Ciência da Computação
- Andamento: cursando
por DanielFerreira » Dom Set 07, 2014 21:35
Olá
Nícolas,
desculpe-me pela demora!
Fizeste

. Deverias ter substituído

por

, pois

.
Não podes "trabalhar" com as duas variáveis, já que aplicou substituição simples. O "x" deveria ter dado lugar ao "u"!
![\\ f(x) = \int_{1}^{2} \frac{6 - 3x}{x} dx \\\\\\ f(x) = \int_{1}^{2} \frac{6}{x} - \frac{3x}{x} dx \\\\\\ f(x) = \int_{1}^{2} \frac{6}{x} dx - \int_{1}^{2} \frac{3\cancel{x}}{\cancel{x}} dx \\\\\\ f(x) = 6 \cdot \int_{1}^{2} \frac{1}{x} dx - 3 \cdot \int_{1}^{2} dx \\\\\\ f(x) = 6 \cdot \left[ \ln x \right]_{1}^{2} - 3 \cdot \left[ x \right]_{1}^{2} \\\\ (...) \\ f(x) = \int_{1}^{2} \frac{6 - 3x}{x} dx \\\\\\ f(x) = \int_{1}^{2} \frac{6}{x} - \frac{3x}{x} dx \\\\\\ f(x) = \int_{1}^{2} \frac{6}{x} dx - \int_{1}^{2} \frac{3\cancel{x}}{\cancel{x}} dx \\\\\\ f(x) = 6 \cdot \int_{1}^{2} \frac{1}{x} dx - 3 \cdot \int_{1}^{2} dx \\\\\\ f(x) = 6 \cdot \left[ \ln x \right]_{1}^{2} - 3 \cdot \left[ x \right]_{1}^{2} \\\\ (...)](/latexrender/pictures/1fe860bee519d8a675d1f53c3a7c6212.png)
Agora é contigo, se não conseguires, retorne!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [INTEGRAL DEFINIDA] Integração por partes?
por fabriel » Seg Mai 06, 2013 01:26
- 5 Respostas
- 3156 Exibições
- Última mensagem por e8group

Ter Mai 07, 2013 21:12
Cálculo: Limites, Derivadas e Integrais
-
- Duvida Integral Definida
por douglasnickson » Dom Jul 03, 2016 01:39
- 5 Respostas
- 14429 Exibições
- Última mensagem por adauto martins

Ter Jul 05, 2016 15:25
Cálculo: Limites, Derivadas e Integrais
-
- [integral definida] - dúvida em exercício
por natanaelskt » Qua Jul 02, 2014 02:13
- 1 Respostas
- 1840 Exibições
- Última mensagem por e8group

Qua Jul 02, 2014 14:04
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL INDEFINIDA] Duvida de integração
por fabriel » Qua Out 03, 2012 16:20
- 3 Respostas
- 1922 Exibições
- Última mensagem por fabriel

Qua Out 03, 2012 17:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Duvida na integração Por partes
por fabriel » Sáb Out 06, 2012 18:56
- 1 Respostas
- 1492 Exibições
- Última mensagem por MarceloFantini

Sáb Out 06, 2012 19:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.