• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria - Problema

Trigonometria - Problema

Mensagempor RodriguesBruno » Qui Mai 22, 2014 18:26

Olá, estou com certa dificuldade no exercício em anexo.
Neste exercício, tentei usar a fórmula Tgx=\frac{Senx}{Cosx} e {Sen}^{2}x+{Cos}^{2}x=1 em que:

Tgx=Senx/Cosx

-3=Senx/Cosx

Senx=-3Cosx

Agora substituindo na fórmula 2:

{Sen}^{2}x+{Cos}^{2}x=1

{3Cos}^{2}x+{Cos}^{2}x=1

{4Cos}^{2}x=1

{Cos}^{2}x=\frac{1}{4}

Cosx=\sqrt[2]{\frac{1}{4}}

Porém, esse não é o resultado e não sei nenhum outro modo de realizar esse exercício, por isso preciso de ajuda e agradeço desde já pela atenção.
Obs.: GABARITO A
Bruno.
Anexos
Trig..PNG
Trig..PNG (8.2 KiB) Exibido 1932 vezes
RodriguesBruno
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 20, 2014 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Trigonometria - Problema

Mensagempor RonnieAlmeida » Qui Mai 22, 2014 19:17

Vamos lá!

Tgx = -3

\frac{senx}{cosx} = -3

senx = -3cosx

Elevando os dois membros ao quadrado:

{sen}^{2}x = -{(3)}^{2}{cos}^{2}x (1)

Por definição, temos:

{sen}^{2}x + {cos}^{2}x = 1

{sen}^{2}x = 1 - {cos}^{2}x (2)

Então, substituindo (2) em (1):

1 - {cos}^{2}x = 9{cos}^{2}x

1 = 10{cos}^{2}x

\frac{1}{10} = {cos}^{2}x

Após tirarmos as raízes dos dois membros, chegaremos em:

cosx = + \sqrt[2]{10}/10 ou cosx = - \sqrt[2]{10}/10

Se x pertence ao 4º quadrante, então seu cosseno é obrigatoriamente positivo...

Portanto cosx = + \sqrt[2]{10}/10

Alternativa A
RonnieAlmeida
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mai 22, 2014 16:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Trigonometria - Problema

Mensagempor RodriguesBruno » Sex Mai 23, 2014 15:30

Fico muito grato por sua ajuda.
RodriguesBruno
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 20, 2014 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59