• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites] Dificuldade com raízes

[limites] Dificuldade com raízes

Mensagempor baloso » Sex Abr 25, 2014 19:22

Olá pessoal, tentei resolver esses limites por conjugados e outras propriedades mas não consegui. Alguém pode me falar quais propriedades eu uso? Mt obg
a) \lim_{x\rightarrow2} \frac{\sqrt[2]{x^2+x-2} - \sqrt[2]{x^2-x+2}}{\sqrt[2]{x+2}-2}

b) \lim_{x\rightarrow2}  \frac{\sqrt[]{2x^2-3x+2}-2}{\sqrt[]{3x^2-5x-1}-1}

c) \lim_{x\rightarrow0} \frac{\sqrt[3]{2x^2-3x+2}-2}{x-x^2}

d) Calcule a,b \in \Re de forma que \lim_{x\rightarrow3} \frac{x^2 +ax+b}{x-3} = 5

e)\lim_{x\rightarrow4} \frac{\sqrt[]{x}-2}{\sqrt[]{x-4}}

f)\lim_{x\rightarrow1} \frac{\sqrt[]{x+2}-\sqrt[]{3}}{x^3-1}

g)\lim_{x\rightarrow11} \frac{\sqrt[]{x}- \sqrt[]{11}}{\sqrt[]{x+11}- \sqrt[]{22}}
baloso
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Abr 25, 2014 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [limites] Dificuldade com raízes

Mensagempor e8group » Sáb Abr 26, 2014 00:36

Boa noite . De acordo com as regras da casa , uma questão por tópico .

Vou te dar uma dica item (d) .

Suponha inicialmente \lim_{x\to 3} x^2 +ax + b \neq 0 . Neste caso o limite são será indeterminado ,logo podemos usar uma das regras operacionais , a saber , a regra do quociente para obter "(algum número diferente de zero )/(número muito próximo de zero) " , o resultado entre aspas sabemos é que +\pm  \infty(dependo do sinal do número) .Absurdo ! Logo só podemos ter

\lim_{x\to 3}   x^2 + ax + b =  0 .Logo , x^2 + ax + b =  (x-3)(x-r_2) (forma fatorada) [r_2 a segunda raiz do polinômio .

Agora utilizando a forma fatora e a hipótese do limite ser 5 , encontre r_2 que em consequência obterá as constantes pedidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [limites] Dificuldade com raízes

Mensagempor baloso » Seg Abr 28, 2014 19:33

Eu entendi o que você quis dizer. Só olhando deu pra identificar que a raiz é 2.
Então temos que usar (x-3)(x+2) para que a = -1 e b = -6 e lim = 5.
Porém eu não faço a mínima ideia de como provar isso... Eu não posso simplesmente falar que a segunda raiz é 2 e pronto né?
baloso
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Abr 25, 2014 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.