• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Séries] Dúvida sobre divergência de série

[Séries] Dúvida sobre divergência de série

Mensagempor leticia_08 » Sáb Abr 19, 2014 20:12

Olá, gostaria de tirar uma dúvida.
Se possuo uma sequência an, tal que an>0 para todo n>=0, e \Sigma an diverge, então mostre que \Sigma an/(an+1) também diverge.

Tentei separar a série em uma soma de duas outras séries, mas acabou não dando certo. Alguém poderia ajudar ??
Obrigada !!
leticia_08
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 19, 2014 20:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Séries] Dúvida sobre divergência de série

Mensagempor e8group » Sáb Abr 19, 2014 22:19

Boa noite leticia_08 . Por favor , sempre utilize o LaTeX . É difícil entender as expressões , não entendo se vc quer dizer

\sum \frac{a_n}{a_{n+1}} ou \sum \frac{a_n}{a_n +1} . Vamos considerar que estamos no segundo caso .

Pensei em provar por contradição , o que acha ?

Denote S = \sum a_n e S '= \sum b_n onde b_n = \frac{a_n}{a_n +1} .

Se S' converge então lim(b_n) = 0 . Segue-se,

0 = lim(b_n) = lim \left(1  -  \frac{1}{a_n +1} \right) =  1 - lim  \left(\frac{1}{a_n +1} \right) .

Logo \left(\frac{1}{a_n +1} \right) = 1 e assim lim(a_n) = 0 .

Desde que S diverge e a_n > 0 \forall n , não podemos ter lim(a_n) = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Séries] Dúvida sobre divergência de série

Mensagempor Russman » Dom Abr 20, 2014 00:29

Se a_n é divergente então \frac{a_n}{a_n + 1} que é menor que a_n tem de divergir também. Não? :|
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Séries] Dúvida sobre divergência de série

Mensagempor e8group » Dom Abr 20, 2014 00:41

Sim a desigualdade é verdadeira . Mas como prova partindo dela ? Comparação direta ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Séries] Dúvida sobre divergência de série

Mensagempor Russman » Dom Abr 20, 2014 00:58

Eu pensei em comparação. Claro que se b_n < a_n e a_n é convergente, então b_n também é. Da mesma forma, se b_n é divergente então a_n também. Mas sabemos que a_n é divergente. Não sei se na última afirmação vale a recíproca.

A comparação no limite, acho eu, é inconclusiva pq não quer dizer que o limite de a_n é não-nulo só pq a_n é divergente. Pode ser que sim, né.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Séries] Dúvida sobre divergência de série

Mensagempor e8group » Dom Abr 20, 2014 11:49

Tem razão Russman , o limite é inconclusivo , fácil encontrar contra-exemplos .

1/n > 0  \forall n > 1  ,  lim(1/n) = 0 e \sum_{1} 1/n = +\infty .

Pensei em trabalhar com a_n ilimitado e limitado .

No primeiro caso lim(a_n) = +\infty , logo \lim(b_n) = 1 \neq 0 \implies   \sum b_n diverge .

No segundo caso , temos que existe M > 0 tal que 0< a_n \leq  M (a_n é limitado inferiormente por 0 e superiormente por M ) . Daí segue

a_n + 1 \leq  M + 1  \implies  \frac{1}{a_n +1} \geq  \frac{1}{M+ 1} \implies   \frac{a_n}{a_n +1} \geq  \frac{1}{M+ 1} a_n . Como \frac{1}{M+ 1} é uma constante , então a série \sum   \frac{a_n}{M+ 1} também diverge que por sua vez , a sua divergência implica a de \sum \frac{a_n}{a_n +1} .

O que acham ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Séries] Dúvida sobre divergência de série

Mensagempor Russman » Dom Abr 20, 2014 13:42

Acho que a demonstração está coerente, santhiago. De sorte que os termos são todos positivos. ;D
Bom artifício quebrar a comparação dessa forma.
Editado pela última vez por Russman em Dom Abr 20, 2014 13:44, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Séries] Dúvida sobre divergência de série

Mensagempor Russman » Dom Abr 20, 2014 13:42

.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59